Large Deviations of nonconventional sums.

S.R.S. Varadhan
Courant Institure, NYU

Florence
Aug 27, 2012
\square Joint work with Yuri Kifer

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} F_{i}\right]\right]=\psi
$$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} F_{i}\right]\right]=\psi
$$

$\square X_{i}$ are i.i.d. $F_{i}=f\left(X_{i}\right)$. The answer is trivial.

$$
\psi=\lim \frac{1}{n} \log \left[E\left[e^{f(X)}\right]\right]^{n}=\log E\left[e^{f(X)}\right]
$$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} F_{i}\right]\right]=\psi
$$

$\square X_{i}$ are i.i.d. $F_{i}=f\left(X_{i}\right)$. The answer is trivial.

$$
\psi=\lim \frac{1}{n} \log \left[E\left[e^{f(X)}\right]\right]^{n}=\log E\left[e^{f(X)}\right]
$$

What if $F_{i}=f\left(X_{i}, X_{2 i}\right)$ or $f\left(X_{i}, X_{2 i}, \ldots, X_{k i}\right)$ for some k.
\square Let us try $k=2$

- Let us try $k=2$
\square Write $i=2^{r} j$ with j odd.
- Let us try $k=2$
\square Write $i=2^{r} j$ with j odd.
\square If $j>\frac{n}{2}, f\left(x_{j}, x_{2 j}\right)$ is disconnected.
- Let us try $k=2$
\square Write $i=2^{r} j$ with j odd.
\square If $j>\frac{n}{2}, f\left(x_{j}, x_{2 j}\right)$ is disconnected.
- Integrate them
- Let us try $k=2$
\square Write $i=2^{r} j$ with j odd.
\square If $j>\frac{n}{2}, f\left(x_{j}, x_{2 j}\right)$ is disconnected.
- Integrate them
$\square \frac{1}{4} \log E[\exp [f(X, Y)]]$
- Let us try $k=2$
\square Write $i=2^{r} j$ with j odd.
\square If $j>\frac{n}{2}, f\left(x_{j}, x_{2 j}\right)$ is disconnected.
- Integrate them
$\square \frac{1}{4} \log E[\exp [f(X, Y)]]$
$\square \frac{n}{4}<j \leq \frac{n}{2}$
- Let us try $k=2$
\square Write $i=2^{r} j$ with j odd.
\square If $j>\frac{n}{2}, f\left(x_{j}, x_{2 j}\right)$ is disconnected.
- Integrate them
$\square \frac{1}{4} \log E[\exp [f(X, Y)]]$
$\square \frac{n}{4}<j \leq \frac{n}{2}$
$\square \frac{1}{8} \log E[\exp [f(X, Y)+f(Y, Z)]]$
- Let us try $k=2$
\square Write $i=2^{r} j$ with j odd.
\square If $j>\frac{n}{2}, f\left(x_{j}, x_{2 j}\right)$ is disconnected.
- Integrate them
$\square \frac{1}{4} \log E[\exp [f(X, Y)]]$
$\square \frac{n}{4}<j \leq \frac{n}{2}$
$\square \frac{1}{8} \log E[\exp [f(X, Y)+f(Y, Z)]]$

$$
\sum_{r=1}^{\infty} \frac{1}{2^{r+1}} \log E\left[\exp \left[\sum_{i=1}^{r} f\left(X_{i}, X_{i+1}\right)\right]\right]
$$

$k \geq 3$
$\square k \geq 3$

- There is a nice way of doing this. Consider the graph $1,2, \ldots, k N$ as vertices. The edges are $n \leftrightarrow i n$ for $i=2,3, \ldots, k$ and $1 \leq n \leq N$.
$\square k \geq 3$
- There is a nice way of doing this. Consider the graph $1,2, \ldots, k N$ as vertices. The edges are $n \leftrightarrow i n$ for $i=2,3, \ldots, k$ and $1 \leq n \leq N$.
\square The graph is (very) disconnected.
$\square k \geq 3$
- There is a nice way of doing this. Consider the graph $1,2, \ldots, k N$ as vertices. The edges are $n \leftrightarrow i n$ for $i=2,3, \ldots, k$ and $1 \leq n \leq N$.
- The graph is (very) disconnected.
$\square p_{1}, p_{2}, \ldots, p_{m}$ are the primes in $2,3, \ldots k$
$\square k \geq 3$
- There is a nice way of doing this. Consider the graph $1,2, \ldots, k N$ as vertices. The edges are $n \leftrightarrow i n$ for $i=2,3, \ldots, k$ and $1 \leq n \leq N$.
- The graph is (very) disconnected.
$\square p_{1}, p_{2}, \ldots, p_{m}$ are the primes in $2,3, \ldots k$
$\square i=j p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}$
$-k \geq 3$
- There is a nice way of doing this. Consider the graph $1,2, \ldots, k N$ as vertices. The edges are $n \leftrightarrow i n$ for $i=2,3, \ldots, k$ and $1 \leq n \leq N$.
- The graph is (very) disconnected.
$\square p_{1}, p_{2}, \ldots, p_{m}$ are the primes in $2,3, \ldots k$
$\square i=j p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}$
$\square j$ coprime to $p_{1}, p_{2}, \ldots, p_{m}$
$-k \geq 3$
- There is a nice way of doing this. Consider the graph $1,2, \ldots, k N$ as vertices. The edges are $n \leftrightarrow i n$ for $i=2,3, \ldots, k$ and $1 \leq n \leq N$.
\square The graph is (very) disconnected.
$\square p_{1}, p_{2}, \ldots, p_{m}$ are the primes in $2,3, \ldots k$
$\square i=j p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}$
$\square j$ coprime to $p_{1}, p_{2}, \ldots, p_{m}$
\square Fix q and consider the subgraph
$G_{q}=\left\{p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{m}^{r_{m}}\right\} \subset[1, q]$
$\square k \geq 3$
- There is a nice way of doing this. Consider the graph $1,2, \ldots, k N$ as vertices. The edges are $n \leftrightarrow i n$ for $i=2,3, \ldots, k$ and $1 \leq n \leq N$.
\square The graph is (very) disconnected.
$\square p_{1}, p_{2}, \ldots, p_{m}$ are the primes in $2,3, \ldots k$
$\square i=j p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}$
$\square j$ coprime to $p_{1}, p_{2}, \ldots, p_{m}$
\square Fix q and consider the subgraph
$G_{q}=\left\{p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{m}^{r_{m}}\right\} \subset[1, q]$
\square Let its size be l_{q}
$\square \ell_{q}$ is nondecreasing in q. Increases by either 0 or 1 .
$\square \ell_{q}$ is nondecreasing in q. Increases by either 0 or 1 .
\square For each ℓ there us a unique G_{ℓ} of size ℓ.
$\square \ell q$ is nondecreasing in q. Increases by either 0 or 1 .
\square For each ℓ there us a unique G_{ℓ} of size ℓ.
- $c_{\ell}(f)=\log E\left[\exp \left[\sum_{i \in G_{\ell}} f\left(X_{i}, X_{2 i}, \ldots, X_{k i}\right)\right]\right]$
$\square \ell_{q}$ is nondecreasing in q. Increases by either 0 or 1 .
- For each ℓ there us a unique G_{ℓ} of size ℓ.
- $c_{\ell}(f)=\log E\left[\exp \left[\sum_{i \in G_{\ell}} f\left(X_{i}, X_{2 i}, \ldots, X_{k i}\right)\right]\right]$
- Large components are insignificant.
$\square \ell q$ is nondecreasing in q. Increases by either 0 or 1 .
- For each ℓ there us a unique G_{ℓ} of size ℓ.
- $c_{\ell}(f)=\log E\left[\exp \left[\sum_{i \in G_{\ell}} f\left(X_{i}, X_{2 i}, \ldots, X_{k i}\right)\right]\right]$
\square Large components are insignificant.
\square If p_{ℓ} is the limit of ratio of the number of components of size ℓ to n,
$\square \ell_{q}$ is nondecreasing in q. Increases by either 0 or 1 .
- For each ℓ there us a unique G_{ℓ} of size ℓ.
- $c_{\ell}(f)=\log E\left[\exp \left[\sum_{i \in G_{\ell}} f\left(X_{i}, X_{2 i}, \ldots, X_{k i}\right)\right]\right]$
\square Large components are insignificant.
\square If p_{ℓ} is the limit of ratio of the number of components of size ℓ to n,
- $\sum_{\ell} \ell p_{\ell}=1$
$\square \ell_{q}$ is nondecreasing in q. Increases by either 0 or 1 .
- For each ℓ there us a unique G_{ℓ} of size ℓ.
- $c_{\ell}(f)=\log E\left[\exp \left[\sum_{i \in G_{\ell}} f\left(X_{i}, X_{2 i}, \ldots, X_{k i}\right)\right]\right]$
\square Large components are insignificant.
\square If p_{ℓ} is the limit of ratio of the number of components of size ℓ to n,
$\square \sum_{\ell} \ell p_{\ell}=1$

$$
\psi(f)=\sum_{\ell \geq k} p_{\ell} c_{\ell}(f)
$$

$\square p_{\ell}$ is determined as follows.
$\square p_{\ell}$ is determined as follows.

- Among $\left\{a p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}\right\}$ that are at most n, what is the proportion of size ℓ ?
$\square p_{\ell}$ is determined as follows.
- Among $\left\{a p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}\right\}$ that are at most n, what is the proportion of size ℓ ?
- Among $\left\{p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}\right\}$ that are at most $\frac{n}{a}$ what proportion is of size ℓ ?
$-p_{\ell}$ is determined as follows.
- Among $\left\{a p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}\right\}$ that are at most n, what is the proportion of size ℓ ?
- Among $\left\{p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}\right\}$ that are at most $\frac{n}{a}$ what proportion is of size ℓ ?
- There are numbers $c(\ell)$ such that $p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}$ is of size ℓ if and only if
$-p_{\ell}$ is determined as follows.
\square Among $\left\{a p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}\right\}$ that are at most n, what is the proportion of size ℓ ?
- Among $\left\{p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}\right\}$ that are at most $\frac{n}{a}$ what proportion is of size ℓ ?
- There are numbers $c(\ell)$ such that $p_{1}^{r_{1}} \cdots p_{m}^{r_{m}}$ is of size ℓ if and only if
$\square a c(\ell) \leq n<a c(\ell+1)$
$\frac{1}{c(\ell+1)}<\frac{a}{n} \leq \frac{1}{c(\ell)}$
$\frac{1}{c(\ell+1)}<\frac{a}{n} \leq \frac{1}{c(\ell)}$
the Density is $\left[\frac{1}{c(\ell)}-\frac{1}{c(\ell+1)}\right]$
$\frac{1}{c(\ell+1)}<\frac{a}{n} \leq \frac{1}{c(\ell)}$ the Density is $\left[\frac{1}{c(\ell)}-\frac{1}{c(\ell+1)}\right]$
\square But a has to be coprime to $p_{1}, p_{2}, \ldots, p_{m}$
$\frac{1}{c(\ell+1)}<\frac{a}{n} \leq \frac{1}{c(\ell)}$ the Density is $\left[\frac{1}{c(\ell)}-\frac{1}{c(\ell+1)}\right]$
\square But a has to be coprime to $p_{1}, p_{2}, \ldots, p_{m}$
$-p_{\ell}=\Pi_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)\left[\frac{1}{c(\ell)}-\frac{1}{c(\ell+1)}\right]$
$\square X_{i}$ is Markov. Transition probability $\pi(x, d y)$.
$\square X_{i}$ is Markov. Transition probability $\pi(x, d y)$.

$$
(T u)(x)=\int e^{f(y)} u(y) \pi(x, d y)
$$

- X_{i} is Markov. Transition probability $\pi(x, d y)$.

$$
(T u)(x)=\int e^{f(y)} u(y) \pi(x, d y)
$$

$\square \rho(T)$ is the spectral radius.

$$
\psi=\log \rho(T)
$$

$\square \lambda(d x, d y)$ is a distribution with both marginals equal to some μ.

- $\lambda(d x, d y)$ is a distribution with both marginals equal to some μ.
- $\lambda_{x}(d y)$ is the conditional.
$\square \lambda(d x, d y)$ is a distribution with both marginals equal to some μ.
$-\lambda_{x}(d y)$ is the conditional.
$\square h(\beta, \alpha)=\int \log \frac{d \beta}{d \alpha} d \beta=\int \frac{d \beta}{d \alpha} \log \frac{d \beta}{d \alpha} d \alpha$

$$
\begin{aligned}
J(\lambda) & =\int h\left(\lambda_{x}(\cdot) ; \pi(x, \cdot)\right) d \mu(x) \\
& =h(\lambda ; \mu(d x) \pi(x, d y))
\end{aligned}
$$

$\square \lambda(d x, d y)$ is a distribution with both marginals equal to some μ.
$-\lambda_{x}(d y)$ is the conditional.
$\square h(\beta, \alpha)=\int \log \frac{d \beta}{d \alpha} d \beta=\int \frac{d \beta}{d \alpha} \log \frac{d \beta}{d \alpha} d \alpha$

$$
\begin{aligned}
& J(\lambda)=\int h\left(\lambda_{x}(\cdot) ; \pi(x, \cdot)\right) d \mu(x) \\
& =h(\lambda ; \mu(d x) \pi(x, d y)) \\
& \bullet \psi(f)=\sup _{\lambda \in \mathcal{M}}\left[\int f d \mu-J(\lambda)\right]
\end{aligned}
$$

- X_{n} is still Markov as before.
- X_{n} is still Markov as before.
$\square F_{i}=f\left(X_{i}, X_{i+1}\right)$
- X_{n} is still Markov as before.
$\square F_{i}=f\left(X_{i}, X_{i+1}\right)$

$$
\psi=\sup _{\lambda}\left[\int f(x, y) \lambda(d x, d y)-J(\lambda)\right]
$$

- X_{n} is still Markov as before.
$\square F_{i}=f\left(X_{i}, X_{i+1}\right)$

$$
\psi=\sup _{\lambda}\left[\int f(x, y) \lambda(d x, d y)-J(\lambda)\right]
$$

Can handle $F_{i}=f\left(X_{i}, X_{i+1}, \ldots X_{i+k}\right)$ by one formula.
\mathcal{S} space of stationary process.
$\square \mathcal{S}$ space of stationary process.

- For a stationary process P the conditional $p\left(\omega, d x_{1}\right)$ is the conditional of X_{1} given the past history.
\mathcal{S} space of stationary process.
- For a stationary process P the conditional $p\left(\omega, d x_{1}\right)$ is the conditional of X_{1} given the past history.

$$
J_{\pi}(P)=E^{P}\left[h\left(p\left(\omega, d x_{1}\right) ; \pi\left(x_{0}, d x_{1}\right)\right)\right]
$$

\mathcal{S} space of stationary process.

- For a stationary process P the conditional $p\left(\omega, d x_{1}\right)$ is the conditional of X_{1} given the past history.

$$
\begin{gathered}
J_{\pi}(P)=E^{P}\left[h\left(p\left(\omega, d x_{1}\right) ; \pi\left(x_{0}, d x_{1}\right)\right)\right] \\
\psi=\sup _{P}\left[E^{P}[f]-J_{\pi}(P)\right]
\end{gathered}
$$

What about $F_{i}=f\left(X_{i}, X_{2 i}, \ldots, X_{k i}\right)$ for some

 $k \geq 2$?
What about $F_{i}=f\left(X_{i}, X_{2 i}, \ldots, X_{k i}\right)$ for some

 $k \geq 2$?\square What about $F_{i}=f\left(a_{i}, X_{i}\right), a_{i}$ are arbitrary auxiliary variables.
\square What about $F_{i}=f\left(X_{i}, X_{2 i}, \ldots, X_{k i}\right)$ for some $k \geq 2$?
\square What about $F_{i}=f\left(a_{i}, X_{i}\right), a_{i}$ are arbitrary auxiliary variables.
$\square \operatorname{Try} f(a, x)=a X . X_{i}$ are i.i.d. $M(a)=E\left[e^{a X}\right]$.
\square What about $F_{i}=f\left(X_{i}, X_{2 i}, \ldots, X_{k i}\right)$ for some $k \geq 2$?
\square What about $F_{i}=f\left(a_{i}, X_{i}\right), a_{i}$ are arbitrary auxiliary variables.
$\square \operatorname{Try} f(a, x)=a X . X_{i}$ are i.i.d. $M(a)=E\left[e^{a X}\right]$.

$$
\psi=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log M\left(a_{i}\right)
$$

Assume $\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}} \rightarrow \alpha$

- Assume $\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}} \rightarrow \alpha$

$$
\psi=\int[\log M(a)] d \alpha(a)
$$

\square Assume $\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}} \rightarrow \alpha$

$$
\psi=\int[\log M(a)] d \alpha(a)
$$

One would expect that if there is a stationary process α with k dimensional marginal $\alpha_{1,2, \ldots, k}$ such that, for every k

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}, a_{i+1}, \ldots, a_{i+k-1}} \rightarrow \alpha_{1,2, \ldots, k}
$$

\square Assume $\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}} \rightarrow \alpha$

$$
\psi=\int[\log M(a)] d \alpha(a)
$$

\square One would expect that if there is a stationary process α with k dimensional marginal $\alpha_{1,2, \ldots, k}$ such that, for every k

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}, a_{i+1}, \ldots, a_{i+k-1}} \rightarrow \alpha_{1,2, \ldots, k}
$$

$\square \psi=\psi(\alpha)$ may exist for nice π
$\square\left\{a_{i}^{n}\right\}$ can even depend on n. We will call such a sequence of n-tuples α like.
$\square\left\{a_{i}^{n}\right\}$ can even depend on n. We will call such a sequence of n-tuples α like.

- $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ maps $\mathcal{X}^{n} \rightarrow \mathbb{R}$
$\square\left\{a_{i}^{n}\right\}$ can even depend on n. We will call such a sequence of n-tuples α like.
- $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ maps $\mathcal{X}^{n} \rightarrow \mathbb{R}$
- $\left\{F_{n}\right\}$ is almost additive if
$\square\left\{a_{i}^{n}\right\}$ can even depend on n. We will call such a sequence of n-tuples α like.
- $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ maps $\mathcal{X}^{n} \rightarrow \mathbb{R}$
- $\left\{F_{n}\right\}$ is almost additive if

$$
\left|F_{n+m}-F_{n}-T_{n} F_{m}\right| \leq C
$$

where $T_{n} F_{m}=F_{m}\left(x_{n+1}, x_{n+2}, \ldots, x_{n+m}\right)$.
$\square\left\{a_{i}^{n}\right\}$ can even depend on n. We will call such a sequence of n-tuples α like.

- $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ maps $\mathcal{X}^{n} \rightarrow \mathbb{R}$
- $\left\{F_{n}\right\}$ is almost additive if

$$
\left|F_{n+m}-F_{n}-T_{n} F_{m}\right| \leq C
$$

where $T_{n} F_{m}=F_{m}\left(x_{n+1}, x_{n+2}, \ldots, x_{n+m}\right)$.
. Example. $F_{n}=\sum_{i=1}^{n-m} f\left(x_{i}, x_{i+1}, \ldots, x_{i+m}\right)$

$\left\{F_{n}\right\}$ defines a continuous linear functional $\mathcal{F}(\cdot)$ on

 $\mathcal{M}_{s}(\mathcal{X})$.- $\left\{F_{n}\right\}$ defines a continuous linear functional $\mathcal{F}(\cdot)$ on $\mathcal{M}_{s}(\mathcal{X})$.
- If $\left\{x_{i}^{n}\right\}$ looks like a sample from α, then
- $\left\{F_{n}\right\}$ defines a continuous linear functional $\mathcal{F}(\cdot)$ on $\mathcal{M}_{s}(\mathcal{X})$.
- If $\left\{x_{i}^{n}\right\}$ looks like a sample from α, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} F_{n}\left(x_{1}^{n}, \ldots, x_{n}^{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \int F_{n} d \alpha=\mathcal{F}(\alpha)
$$

- $\left\{F_{n}\right\}$ defines a continuous linear functional $\mathcal{F}(\cdot)$ on $\mathcal{M}_{s}(\mathcal{X})$.
- If $\left\{x_{i}^{n}\right\}$ looks like a sample from α, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} F_{n}\left(x_{1}^{n}, \ldots, x_{n}^{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \int F_{n} d \alpha=\mathcal{F}(\alpha)
$$

$$
\psi=\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]\right]
$$

- $\left\{F_{n}\right\}$ defines a continuous linear functional $\mathcal{F}(\cdot)$ on $\mathcal{M}_{s}(\mathcal{X})$.
- If $\left\{x_{i}^{n}\right\}$ looks like a sample from α, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} F_{n}\left(x_{1}^{n}, \ldots, x_{n}^{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \int F_{n} d \alpha=\mathcal{F}(\alpha)
$$

$$
\psi=\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]\right]
$$

$$
\psi=\sup _{\mu \in \mathcal{M}_{s}(\mathcal{X})}[\mathcal{F}(\mu)-J(\mu)]
$$

Proof

Replace $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with

Proof

Replace $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with
$\square \frac{1}{k} \sum_{i=1}^{n-k+1} F_{k}\left(x_{i}, \ldots, x_{i+k-1}\right)$

Proof

\square Replace $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with
$=\frac{1}{k} \sum_{i=1}^{n-k+1} F_{k}\left(x_{i}, \ldots, x_{i+k-1}\right)$
$\square \frac{1}{n} \log E\left[\exp \left[\frac{1}{k} \sum_{i=1}^{n-k+1} F_{k}\left(x_{i}, \ldots, x_{i+k-1}\right)\right]\right]$

Proof

\square Replace $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with
$\square \frac{1}{k} \sum_{i=1}^{n-k+1} F_{k}\left(x_{i}, \ldots, x_{i+k-1}\right)$
$\square \frac{1}{n} \log E\left[\exp \left[\frac{1}{k} \sum_{i=1}^{n-k+1} F_{k}\left(x_{i}, \ldots, x_{i+k-1}\right)\right]\right]$
$\square \sup _{\mu}\left[\frac{1}{k} \int F_{k} d \mu-J(\mu)\right]$

Proof

\square Replace $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with
$\square \frac{1}{k} \sum_{i=1}^{n-k+1} F_{k}\left(x_{i}, \ldots, x_{i+k-1}\right)$
$\square \frac{1}{n} \log E\left[\exp \left[\frac{1}{k} \sum_{i=1}^{n-k+1} F_{k}\left(x_{i}, \ldots, x_{i+k-1}\right)\right]\right]$
$-\sup _{\mu}\left[\frac{1}{k} \int F_{k} d \mu-J(\mu)\right]$

- Let $k \rightarrow \infty$

Proof

\square Replace $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with
$\square \frac{1}{k} \sum_{i=1}^{n-k+1} F_{k}\left(x_{i}, \ldots, x_{i+k-1}\right)$
$\square \frac{1}{n} \log E\left[\exp \left[\frac{1}{k} \sum_{i=1}^{n-k+1} F_{k}\left(x_{i}, \ldots, x_{i+k-1}\right)\right]\right]$

- $\sup _{\mu}\left[\frac{1}{k} \int F_{k} d \mu-J(\mu)\right]$
- Let $k \rightarrow \infty$
$\square \sup _{\mu}[\mathcal{F}(\mu)-J(\mu)]$
- Suppose $H_{n}\left(\left(a_{1}, x_{1}\right), \ldots,\left(a_{n}, x_{n}\right)\right)$ maps $(\mathcal{A} \times \mathcal{X})^{n} \rightarrow \mathbb{R}$ is almost additive.
- Suppose $H_{n}\left(\left(a_{1}, x_{1}\right), \ldots,\left(a_{n}, x_{n}\right)\right)$ maps
$(\mathcal{A} \times \mathcal{X})^{n} \rightarrow \mathbb{R}$ is almost additive.
- $F_{n}\left(a_{1}, \ldots, a_{n}\right)$ given by

$$
\log E^{P}\left[\exp \left[H_{n}\left(\left(a_{1}, x_{1}\right), \ldots,\left(a_{n}, x_{n}\right)\right)\right]\right.
$$

is almost additive and

- Suppose $H_{n}\left(\left(a_{1}, x_{1}\right), \ldots,\left(a_{n}, x_{n}\right)\right)$ maps
$(\mathcal{A} \times \mathcal{X})^{n} \rightarrow \mathbb{R}$ is almost additive.
- $F_{n}\left(a_{1}, \ldots, a_{n}\right)$ given by

$$
\log E^{P}\left[\exp \left[H_{n}\left(\left(a_{1}, x_{1}\right), \ldots,\left(a_{n}, x_{n}\right)\right)\right]\right.
$$

is almost additive and

$$
\mathcal{F}(\alpha)=\sup _{\beta \in \mathcal{M}_{s}(\alpha)}\left[\mathcal{H}(\beta)-J^{*}(\beta)\right]
$$

- We can allow some periodicity.
- We can allow some periodicity.
$-H_{n}\left(\left(a_{1}, x_{1}, x_{2}\right),\left(a_{2}, x_{3}, x_{4}\right), \ldots,\left(a_{n}, x_{n}, x_{2 n}\right)\right.$
- We can allow some periodicity.
$\square H_{n}\left(\left(a_{1}, x_{1}, x_{2}\right),\left(a_{2}, x_{3}, x_{4}\right), \ldots,\left(a_{n}, x_{n}, x_{2 n}\right)\right.$
\square Just view $\left(x_{2 i-1}, x_{2 i}\right)$ as y_{i}.
- We can allow some periodicity.
$\square H_{n}\left(\left(a_{1}, x_{1}, x_{2}\right),\left(a_{2}, x_{3}, x_{4}\right), \ldots,\left(a_{n}, x_{n}, x_{2 n}\right)\right.$
\square Just view $\left(x_{2 i-1}, x_{2 i}\right)$ as y_{i}.
$\pi^{*}\left(y, d y^{\prime}\right)=\pi\left(x_{2}, d x_{1}^{\prime}\right) \pi\left(x_{1}^{\prime}, d x_{2}^{\prime}\right)$
- The supremum is over β with \mathcal{A} marginal α.
- The supremum is over β with \mathcal{A} marginal α.
$\square J^{*}(\beta)$ is given by

$$
\int h\left(\beta\left(\omega \mid d a_{1}, d x_{1}\right) ; \alpha\left(\omega \mid d a_{1}\right) \times \pi\left(x_{0}, d x_{1}\right)\right) d \beta
$$

- The supremum is over β with \mathcal{A} marginal α.
$\square J^{*}(\beta)$ is given by

$$
\int h\left(\beta\left(\omega \mid d a_{1}, d x_{1}\right) ; \alpha\left(\omega \mid d a_{1}\right) \times \pi\left(x_{0}, d x_{1}\right)\right) d \beta
$$

We use this repeatedly to evaluate when $F_{i}=f\left(X_{i}, X_{2 i}\right)$

The supremum is over β with \mathcal{A} marginal α.
$\square J^{*}(\beta)$ is given by

$$
\int h\left(\beta\left(\omega \mid d a_{1}, d x_{1}\right) ; \alpha\left(\omega \mid d a_{1}\right) \times \pi\left(x_{0}, d x_{1}\right)\right) d \beta
$$

\square We use this repeatedly to evaluate when
$F_{i}=f\left(X_{i}, X_{2 i}\right)$

- Write

$$
\sum_{i=1}^{2^{k} n} F_{i}=\sum_{i=1}^{n} F_{i}+\sum_{j=1}^{k-1} \sum_{i=2^{j} n+1}^{2^{j+1} n} F_{i}
$$

- When k is large the initial term can be ignored.
- When k is large the initial term can be ignored.
$\square H^{0}=0$ and $H^{1}\left(a_{1}, \ldots, a_{2^{k-1} n}\right)$ is given by

$$
\log E^{P}\left[\exp \left[\sum_{i=1}^{2^{k-1} n} f\left(a_{i}, x_{2^{k} n+2 i}\right)\right]\right]
$$

- When k is large the initial term can be ignored. $H^{0}=0$ and $H^{1}\left(a_{1}, \ldots, a_{2^{k-1} n}\right)$ is given by

$$
\log E^{P}\left[\exp \left[\sum_{i=1}^{2^{k-1} n} f\left(a_{i}, x_{2^{k} n+2 i}\right)\right]\right]
$$

Consider now $H^{2}\left(a_{1}, \ldots, a_{2^{k-2} n}\right)$ given by

$$
\begin{array}{r}
\log E\left[\operatorname { e x p } \left[H^{1}\left(x_{2^{k-1} n+1}, x_{2^{k-1}+2}, \ldots, x_{2^{k n}}\right)\right.\right. \\
\left.\left.+\sum_{i=1}^{2^{k-2} n} f\left(a_{i}, x_{2^{k-1} n+2 i}\right)\right]\right]
\end{array}
$$

- $\mathcal{F}_{0}(\alpha)=0 . \lambda=\left(\lambda_{1}, \lambda_{2}\right)$

$$
\begin{aligned}
& \square \mathcal{F}_{0}(\alpha)=0 . \lambda=\left(\lambda_{1}, \lambda_{2}\right) \\
& \square \lambda=\lambda T^{-2} \cdot \lambda_{2}^{*}=\frac{1}{2}\left[\lambda+\lambda T^{-1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \square \mathcal{F}_{0}(\alpha)=0 . \lambda=\left(\lambda_{1}, \lambda_{2}\right) \\
& \lambda=\lambda T^{-2} \cdot \lambda_{2}^{*}=\frac{1}{2}\left[\lambda+\lambda T^{-1}\right] \\
& \mathcal{F}_{j}(\alpha)=\sup _{\lambda_{: ~}=\alpha}\left[E^{\lambda}\left[f\left(a_{1}, X_{2}\right)\right]+\mathcal{F}_{j-1}\left(\lambda_{2}^{*}\right)-J_{\alpha}(\lambda)\right]
\end{aligned}
$$

$\square \mathcal{F}_{0}(\alpha)=0 . \lambda=\left(\lambda_{1}, \lambda_{2}\right)$
$\square \lambda=\lambda T^{-2} \cdot \lambda_{2}^{*}=\frac{1}{2}\left[\lambda+\lambda T^{-1}\right]$
$\mathcal{F}_{j}(\alpha)=\sup _{\lambda: \lambda_{1}=\alpha}\left[E^{\lambda}\left[f\left(a_{1}, X_{2}\right)\right]+\mathcal{F}_{j-1}\left(\lambda_{2}^{*}\right)-J_{\alpha}(\lambda)\right]$
$\square \psi=\lim _{k \rightarrow \infty} \frac{\mathcal{F}_{k}(\alpha)}{2^{k}}$
$\square \mathcal{F}_{0}(\alpha)=0 . \lambda=\left(\lambda_{1}, \lambda_{2}\right)$
$\square \lambda=\lambda T^{-2} \cdot \lambda_{2}^{*}=\frac{1}{2}\left[\lambda+\lambda T^{-1}\right]$
$\mathcal{F}_{j}(\alpha)=\sup _{\lambda: \lambda_{1}=\alpha}\left[E^{\lambda}\left[f\left(a_{1}, X_{2}\right)\right]+\mathcal{F}_{j-1}\left(\lambda_{2}^{*}\right)-J_{\alpha}(\lambda)\right]$
$\square \psi=\lim _{k \rightarrow \infty} \frac{\mathcal{F}_{k}(\alpha)}{2^{k}}$

- The limit is independent of α.
$\square k \geq 3$ is much harder.
$\square k \geq 3$ is much harder.
- The iteration from one step to another does not involve a fixed proportion.
$\square k \geq 3$ is much harder.
- The iteration from one step to another does not involve a fixed proportion.
\square The periodicity which was always two 2 when $k=2$ varies at each step.
$\square k \geq 3$ is much harder.
- The iteration from one step to another does not involve a fixed proportion.
\square The periodicity which was always two 2 when $k=2$ varies at each step.
- " a " is a much more complex object!
$\square k \geq 3$ is much harder.
- The iteration from one step to another does not involve a fixed proportion.
\square The periodicity which was always two 2 when $k=2$ varies at each step.
- " a " is a much more complex object!
- $\mathcal{A}=\mathcal{X}^{k_{p}}$ and varies with p.
$\square k \geq 3$ is much harder.
- The iteration from one step to another does not involve a fixed proportion.
\square The periodicity which was always two 2 when $k=2$ varies at each step.
- " a " is a much more complex object!
- $\mathcal{A}=\mathcal{X}^{k_{p}}$ and varies with p.
\square The procedure is the same.

