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Fi]] = ψ

Xi are i.i.d.Fi = f(Xi). The answer is trivial.

ψ = lim
1

n
log[E[ef(X)]]n = logE[ef(X)]

What if Fi = f(Xi, X2i) or f(Xi, X2i, . . . , Xki) for
somek.
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Let us tryk = 2

Write i = 2rj with j odd.

If j > n
2 , f(xj, x2j) is disconnected.

Integrate them
1
4 logE[exp[f(X,Y )]]
n
4 < j ≤ n

2

1
8 logE[exp[f(X,Y ) + f(Y, Z)]]

∞
∑

r=1

1

2r+1
logE[exp[

r
∑

i=1

f(Xi, Xi+1)]]
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k ≥ 3

There is a nice way of doing this. Consider the
graph1, 2, . . . , kN as vertices. The edges are
n↔ in for i = 2, 3, . . . , k and1 ≤ n ≤ N .

The graph is (very ) disconnected.

p1, p2, . . . , pm are the primes in2, 3, . . . k

i = jpr11 · · · prmm
j coprime top1, p2, . . . , pm
Fix q and consider the subgraph
Gq = {pr11 p

r2
2 · · · prmm } ⊂ [1, q]

Let its size belq
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ℓq is nondecreasing inq. Increases by either0 or 1.

For eachℓ there us a uniqueGℓ of sizeℓ.

cℓ(f) = logE[exp[
∑

i∈Gℓ
f(Xi, X2i, . . . , Xki)]]

Large components are insignificant.

If pℓ is the limit of ratio of the number of
components of sizeℓ to n,
∑

ℓ ℓ pℓ = 1

ψ(f) =
∑

ℓ≥k

pℓcℓ(f)
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pℓ is determined as follows.

Among{apr11 · · · prmm } that are at mostn, what is the
proportion of sizeℓ?

Among{pr11 · · · prmm } that are at mostn
a

what
proportion is of sizeℓ?

There are numbersc(ℓ) such thatpr11 · · · prmm is of
sizeℓ if and only if

ac(ℓ) ≤ n < ac(ℓ + 1)
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1
c(ℓ+1) <

a
n
≤ 1

c(ℓ)

the Density is[ 1
c(ℓ) −

1
c(ℓ+1) ]

But a has to be coprime top1, p2, . . . , pm

pℓ = Πm
i=1(1−

1
pi
)[ 1

c(ℓ) −
1

c(ℓ+1)]
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Xi is Markov. Transition probabilityπ(x, dy).
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Xi is Markov. Transition probabilityπ(x, dy).
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Xi is Markov. Transition probabilityπ(x, dy).

(Tu)(x) =

∫

ef(y)u(y)π(x, dy)

ρ(T ) is the spectral radius.

ψ = log ρ(T )

– p.9/29



λ(dx, dy) is a distribution with both marginals equal
to someµ.

– p.10/29



λ(dx, dy) is a distribution with both marginals equal
to someµ.

λx(dy) is the conditional.

– p.10/29



λ(dx, dy) is a distribution with both marginals equal
to someµ.

λx(dy) is the conditional.

h(β, α) =
∫
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λ(dx, dy) is a distribution with both marginals equal
to someµ.

λx(dy) is the conditional.

h(β, α) =
∫

log dβ
dα
dβ =

∫

dβ
dα

log dβ
dα
dα

J(λ) =

∫

h(λx(·);π(x, ·))dµ(x)

= h(λ;µ(dx)π(x, dy))

ψ(f) = supλ∈M[
∫

fdµ− J(λ)]
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Xn is still Markov as before.

Fi = f(Xi, Xi+1)

ψ = sup
λ

[

∫

f(x, y)λ(dx, dy) − J(λ)]
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Xn is still Markov as before.

Fi = f(Xi, Xi+1)

ψ = sup
λ

[

∫

f(x, y)λ(dx, dy) − J(λ)]

Can handleFi = f(Xi, Xi+1, . . . Xi+k) by one
formula.
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S space of stationary process.

For a stationary processP the conditionalp(ω, dx1)
is the conditional ofX1 given the past history.

Jπ(P ) = EP [h(p(ω, dx1);π(x0, dx1))]

ψ = sup
P

[

EP [f ]− Jπ(P )
]
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What aboutFi = f(Xi, X2i, . . . , Xki) for some
k ≥ 2?

What aboutFi = f(ai, Xi), ai are arbitrary auxiliary
variables.

Try f(a, x) = aX. Xi are i.i.d.M(a) = E[eaX ].

ψ = lim
n→∞

1

n

n
∑

i=1

logM(ai)
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Assume1
n

∑n
i=1 δai → α

ψ =

∫

[logM(a)]dα(a)

One would expect that if there is a stationary process
α with k dimensional marginalα1,2,...,k such that, for
everyk

1

n

n
∑

i=1

δai,ai+1,...,ai+k−1
→ α1,2,...,k

ψ = ψ(α) may exist for niceπ
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{ani } can even depend onn. We will call such a
sequence ofn−tuplesα like.

Fn(x1, x2, . . . , xn) mapsX n → R

{Fn} is almost additive if

|Fn+m − Fn − TnFm| ≤ C

whereTnFm = Fm(xn+1, xn+2, . . . , xn+m).

Example.Fn =
∑n−m

i=1 f(xi, xi+1, . . . , xi+m)
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{Fn} defines a continuous linear functionalF(·) on
Ms(X ).

If {xni } looks like a sample fromα, then

lim
n→∞

1

n
Fn(x

n
1 , . . . , x

n
n) = lim

n→∞

1

n

∫

Fn dα = F(α)

ψ = lim
n→∞

1

n
logEP

[

exp[Fn(x1, x2, . . . , xn)]
]

ψ = sup
µ∈Ms(X )

[F(µ)− J(µ)]
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SupposeHn((a1, x1), . . . , (an, xn)) maps
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Fn(a1, . . . , an) given by

logEP [exp[Hn((a1, x1), . . . , (an, xn))]

is almost additive and
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SupposeHn((a1, x1), . . . , (an, xn)) maps
(A×X )n → R is almost additive.

Fn(a1, . . . , an) given by

logEP [exp[Hn((a1, x1), . . . , (an, xn))]

is almost additive and

F(α) = sup
β∈Ms(α)

[H(β)− J∗(β)]
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We can allow some periodicity.

Hn((a1, x1, x2), (a2, x3, x4), . . . , (an, xn, x2n)

Just view(x2i−1, x2i) asyi.

π∗(y, dy′) = π(x2, dx
′
1)π(x

′
1, dx

′
2)
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The supremum is overβ with A marginalα.

J∗(β) is given by
∫

h(β(ω|da1, dx1);α(ω|da1)× π(x0, dx1))dβ

We use this repeatedly to evaluate when
Fi = f(Xi, X2i)

Write

2kn
∑

i=1

Fi =
n

∑

i=1

Fi +
k−1
∑

j=1

2j+1n
∑

i=2jn+1

Fi
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Whenk is large the initial term can be ignored.

H0 = 0 andH1(a1, . . . , a2k−1n) is given by

logEP [exp[
2k−1n
∑

i=1

f(ai, x2kn+2i)]]
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Whenk is large the initial term can be ignored.

H0 = 0 andH1(a1, . . . , a2k−1n) is given by

logEP [exp[
2k−1n
∑

i=1

f(ai, x2kn+2i)]]

Consider nowH2(a1, . . . , a2k−2n) given by

logE[exp[H1(x2k−1n+1, x2k−1+2, . . . , x2kn)

+
2k−2n
∑

i=1

f(ai, x2k−1n+2i)]]
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1
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Eλ[f(a1, X2)] +Fj−1(λ
∗
2)− Jα(λ)

]

ψ = limk→∞
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F0(α) = 0. λ = (λ1, λ2)

λ = λT−2. λ∗2 =
1
2 [λ+ λT−1]

Fj(α) = sup
λ:λ1=α

[

Eλ[f(a1, X2)] +Fj−1(λ
∗
2)− Jα(λ)

]

ψ = limk→∞
Fk(α)
2k

The limit is independent ofα.
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k ≥ 3 is much harder.

The iteration from one step to another does not
involve a fixed proportion.

The periodicity which was always two2 whenk = 2
varies at each step.

"a" is a much more complex object!

A = X kp and varies withp.

The procedure is the same.
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