Large Deviations of nonconventional sums.

S.R.S. Varadhan Courant Institure, NYU

> Florence Aug 27, 2012

Joint work with Yuri Kifer

$$\lim_{n \to \infty} \frac{1}{n} \log E^P[\exp[\sum_{i=1}^n F_i]] = \psi$$

$$\lim_{n \to \infty} \frac{1}{n} \log E^{P}[\exp[\sum_{i=1}^{n} F_{i}]] = \psi$$

 X_{i} are i.i.d. $F_{i} = f(X_{i})$. The answer is trivial.
 $\psi = \lim \frac{1}{n} \log[E[e^{f(X)}]]^{n} = \log E[e^{f(X)}]$

 \boldsymbol{n}

$$\lim_{n \to \infty} \frac{1}{n} \log E^P[\exp[\sum_{i=1}^n F_i]] = \psi$$

 $\blacksquare X_i$ are i.i.d. $F_i = f(X_i)$. The answer is trivial.

$$\psi = \lim \frac{1}{n} \log[E[e^{f(X)}]]^n = \log E[e^{f(X)}]$$

What if $F_i = f(X_i, X_{2i})$ or $f(X_i, X_{2i}, \dots, X_{ki})$ for some k.

• Let us try k = 2

Let us try k = 2Write $i = 2^r j$ with j odd.

Let us try k = 2 Write i = 2^rj with j odd. If j > ⁿ/₂, f(x_j, x_{2j}) is disconnected.

Let us try k = 2 Write i = 2^rj with j odd. If j > ⁿ/₂, f(x_j, x_{2j}) is disconnected. Integrate them

Let us try k = 2
Write i = 2^rj with j odd.
If j > ⁿ/₂, f(x_j, x_{2j}) is disconnected.
Integrate them
¹/₄ log E[exp[f(X, Y)]]

Let us try k = 2Write $i = 2^r j$ with j odd. If $j > \frac{n}{2}$, $f(x_j, x_{2j})$ is disconnected. Integrate them $\frac{1}{4} \log E[\exp[f(X, Y)]]$ $\frac{n}{4} < j \le \frac{n}{2}$

Let us try k = 2• Write $i = 2^r j$ with j odd. If $j > \frac{n}{2}$, $f(x_j, x_{2j})$ is disconnected. Integrate them $= \frac{1}{4} \log E[\exp[f(X, Y)]]$ $\blacksquare \frac{n}{4} < j \leq \frac{n}{2}$ $= \frac{1}{8} \log E[\exp[f(X,Y) + f(\overline{Y,Z})]]$

• Let us try k = 2• Write $i = 2^r j$ with j odd. If $j > \frac{n}{2}$, $f(x_j, x_{2j})$ is disconnected. Integrate them $= \frac{1}{4} \log E[\exp[f(X, Y)]]$ $\blacksquare \frac{n}{4} < j \leq \frac{n}{2}$ $= \frac{1}{8} \log E[\exp[f(X, Y) + f(Y, Z)]]$ $\sum_{i=1}^{\infty} \frac{1}{2^{r+1}} \log E[\exp[\sum_{i=1}^{r} f(X_i, X_{i+1})]]$

• $k \ge 3$

$\blacksquare k \ge 3$

There is a nice way of doing this. Consider the graph $1, 2, \ldots, kN$ as vertices. The edges are $n \leftrightarrow in$ for $i = 2, 3, \ldots, k$ and $1 \le n \le N$.

There is a nice way of doing this. Consider the graph $1, 2, \ldots, kN$ as vertices. The edges are $n \leftrightarrow in$ for $i = 2, 3, \ldots, k$ and $1 \le n \le N$.

The graph is (very) disconnected.

$\mathbf{k} \geq 3$

- There is a nice way of doing this. Consider the graph $1, 2, \ldots, kN$ as vertices. The edges are $n \leftrightarrow in$ for $i = 2, 3, \ldots, k$ and $1 \le n \le N$.
- The graph is (very) disconnected.
- $p_1, p_2, ..., p_m$ are the primes in 2, 3, ..., k

There is a nice way of doing this. Consider the graph 1, 2, ..., kN as vertices. The edges are n ↔ in for i = 2, 3, ..., k and 1 ≤ n ≤ N.
The graph is (very) disconnected.
p₁, p₂, ..., p_m are the primes in 2, 3, ... k
i = jp₁^{r₁} ... p_m^{r_m}

- There is a nice way of doing this. Consider the graph 1, 2, ..., kN as vertices. The edges are n ↔ in for i = 2, 3, ..., k and 1 ≤ n ≤ N.
 The graph is (very) disconnected.
- p_1, p_2, \ldots, p_m are the primes in $2, 3, \ldots k$
- $\blacksquare i = jp_1^{r_1} \cdots p_m^{r_m}$
- i coprime to p_1, p_2, \ldots, p_m

- There is a nice way of doing this. Consider the graph $1, 2, \ldots, kN$ as vertices. The edges are $n \leftrightarrow in$ for $i = 2, 3, \ldots, k$ and $1 \le n \le N$.
- The graph is (very) disconnected.
- p_1, p_2, \ldots, p_m are the primes in $2, 3, \ldots k$
- $\blacksquare i = jp_1^{r_1} \cdots p_m^{r_m}$
- i coprime to p_1, p_2, \ldots, p_m
- Fix q and consider the subgraph $G_q = \{p_1^{r_1} p_2^{r_2} \cdots p_m^{r_m}\} \subset [1, q]$

- There is a nice way of doing this. Consider the graph $1, 2, \ldots, kN$ as vertices. The edges are $n \leftrightarrow in$ for $i = 2, 3, \ldots, k$ and $1 \le n \le N$.
- The graph is (very) disconnected.
- $p_1, p_2, \dots, p_m \text{ are the primes in } 2, 3, \dots k$ $i = j p_1^{r_1} \cdots p_m^{r_m}$
- i coprime to p_1, p_2, \ldots, p_m
- Fix q and consider the subgraph $G_q = \{p_1^{r_1} p_2^{r_2} \cdots p_m^{r_m}\} \subset [1, q]$
- **Let its size be** l_q

$large \ell_q$ is nondecreasing in q. Increases by either 0 or 1.

ℓ_q is nondecreasing in q. Increases by either 0 or 1.
For each ℓ there us a unique G_ℓ of size ℓ.

ℓ_q is nondecreasing in q. Increases by either 0 or 1.
For each ℓ there us a unique G_ℓ of size ℓ.
c_ℓ(f) = log E[exp[∑_{i∈Gℓ} f(X_i, X_{2i},..., X_{ki})]]

ℓ_q is nondecreasing in q. Increases by either 0 or 1.
For each ℓ there us a unique G_ℓ of size ℓ.
c_ℓ(f) = log E[exp[∑_{i∈Gℓ} f(X_i, X_{2i},..., X_{ki})]]
Large components are insignificant.

ℓ_q is nondecreasing in q. Increases by either 0 or 1.
For each ℓ there us a unique G_ℓ of size ℓ.
c_ℓ(f) = log E[exp[∑_{i∈Gℓ} f(X_i, X_{2i},..., X_{ki})]]
Large components are insignificant.
If p_ℓ is the limit of ratio of the number of components of size ℓ to n,

ℓ_q is nondecreasing in q. Increases by either 0 or 1.
For each ℓ there us a unique G_ℓ of size ℓ.
c_ℓ(f) = log E[exp[∑_{i∈Gℓ} f(X_i, X_{2i},..., X_{ki})]]
Large components are insignificant.
If p_ℓ is the limit of ratio of the number of components of size ℓ to n,

$$\square \sum_{\ell} \ell p_{\ell} = 1$$

ℓ_q is nondecreasing in q. Increases by either 0 or 1.
For each ℓ there us a unique G_ℓ of size ℓ.
c_ℓ(f) = log E[exp[∑_{i∈Gℓ} f(X_i, X_{2i},..., X_{ki})]]
Large components are insignificant.
If p_ℓ is the limit of ratio of the number of components of size ℓ to n,

$$\sum_{\ell} \ell \, p_\ell = 1$$

$$\psi(f) = \sum_{\ell \ge k} p_\ell c_\ell(f)$$

\mathbf{P}_{ℓ} is determined as follows.

*p*_ℓ is determined as follows. Among {*ap*₁^{r₁} · · · *p*_m^{r_m}} that are at most *n*, what is the proportion of size *ℓ*?

\mathbf{P}_{ℓ} is determined as follows.

- Among $\{ap_1^{r_1} \cdots p_m^{r_m}\}$ that are at most n, what is the proportion of size ℓ ?
- Among $\{p_1^{r_1} \cdots p_m^{r_m}\}$ that are at most $\frac{n}{a}$ what proportion is of size ℓ ?

$\square p_{\ell}$ is determined as follows.

- Among $\{ap_1^{r_1} \cdots p_m^{r_m}\}$ that are at most n, what is the proportion of size ℓ ?
- Among $\{p_1^{r_1} \cdots p_m^{r_m}\}$ that are at most $\frac{n}{a}$ what proportion is of size ℓ ?
- There are numbers $c(\ell)$ such that $p_1^{r_1} \cdots p_m^{r_m}$ is of size ℓ if and only if

$\square p_{\ell}$ is determined as follows.

- Among $\{ap_1^{r_1} \cdots p_m^{r_m}\}$ that are at most n, what is the proportion of size ℓ ?
- Among $\{p_1^{r_1} \cdots p_m^{r_m}\}$ that are at most $\frac{n}{a}$ what proportion is of size ℓ ?
- There are numbers $c(\ell)$ such that $p_1^{r_1} \cdots p_m^{r_m}$ is of size ℓ if and only if

 $\blacksquare ac(\ell) \le n < ac(\ell+1)$

 $\frac{1}{c(\ell+1)} < \frac{a}{n} \le \frac{1}{c(\ell)}$

$\frac{1}{c(\ell+1)} < \frac{a}{n} \le \frac{1}{c(\ell)}$ = the Density is $\left[\frac{1}{c(\ell)} - \frac{1}{c(\ell+1)}\right]$

$\frac{1}{c(\ell+1)} < \frac{a}{n} \le \frac{1}{c(\ell)}$ $\frac{1}{c(\ell+1)} < \frac{1}{c(\ell)} = \frac{1}{c(\ell+1)}$ $\frac{1}{b(\ell+1)} = \frac{1}{b(\ell+1)}$ $\frac{1}{b(\ell+1)} = \frac{1}{b(\ell+1)}$ $\frac{1}{c(\ell+1)} = \frac{1}{c(\ell+1)}$

$$\frac{1}{c(\ell+1)} < \frac{a}{n} \leq \frac{1}{c(\ell)}$$

$$the Density is \left[\frac{1}{c(\ell)} - \frac{1}{c(\ell+1)}\right]$$

$$But a has to be coprime to p_1, p_2, \dots, p_m

$$p_\ell = \prod_{i=1}^m (1 - \frac{1}{p_i}) \left[\frac{1}{c(\ell)} - \frac{1}{c(\ell+1)}\right]$$$$

$\blacksquare X_i$ is Markov. Transition probability $\pi(x, dy)$.

$\blacksquare X_i$ is Markov. Transition probability $\pi(x, dy)$.

$$(Tu)(x) = \int e^{f(y)} u(y) \pi(x, dy)$$

$\blacksquare X_i$ is Markov. Transition probability $\pi(x, dy)$.

$$(Tu)(x) = \int e^{f(y)} u(y) \pi(x, dy)$$

 $\rho(T)$ is the spectral radius.

 $\psi = \log \rho(T)$

 $\lambda_x(dy)$ is the conditional.

 $\lambda_x(dy)$ is the conditional.

 $= h(\beta, \alpha) = \int \log \frac{d\beta}{d\alpha} d\beta = \int \frac{d\beta}{d\alpha} \log \frac{d\beta}{d\alpha} d\alpha$

$$J(\lambda) = \int h(\lambda_x(\cdot); \pi(x, \cdot)) d\mu(x)$$
$$= h(\lambda; \mu(dx)\pi(x, dy))$$

 $\lambda_x(dy)$ is the conditional.

 $= h(\beta, \alpha) = \int \log \frac{d\beta}{d\alpha} d\beta = \int \frac{d\beta}{d\alpha} \log \frac{d\beta}{d\alpha} d\alpha$

$$J(\lambda) = \int h(\lambda_x(\cdot); \pi(x, \cdot)) d\mu(x)$$
$$= h(\lambda; \mu(dx)\pi(x, dy))$$

 $= \psi(f) = \sup_{\lambda \in \mathcal{M}} \left[\int f d\mu - J(\lambda) \right]$

$\blacksquare X_n$ is still Markov as before.

X_n is still Markov as before. F_i = f(X_i, X_{i+1})

X_n is still Markov as before. $F_i = f(X_i, X_{i+1})$

$$\psi = \sup_{\lambda} \left[\int f(x, y) \lambda(dx, dy) - J(\lambda) \right]$$

\mathbf{I} space of stationary process.

\mathbf{S} space of stationary process.

For a stationary process P the conditional $p(\omega, dx_1)$ is the conditional of X_1 given the past history.

\mathbf{S} space of stationary process.

For a stationary process P the conditional $p(\omega, dx_1)$ is the conditional of X_1 given the past history.

$$J_{\pi}(P) = E^{P}[h(p(\omega, dx_{1}); \pi(x_{0}, dx_{1}))]$$

\mathbf{S} space of stationary process.

For a stationary process P the conditional $p(\omega, dx_1)$ is the conditional of X_1 given the past history.

$$J_{\pi}(P) = E^{P}[h(p(\omega, dx_{1}); \pi(x_{0}, dx_{1}))]$$

$$\psi = \sup_{P} \left[E^{P}[f] - J_{\pi}(P) \right]$$

What about $F_i = f(X_i, X_{2i}, \dots, X_{ki})$ for some $k \ge 2?$

What about $F_i = f(X_i, X_{2i}, \dots, X_{ki})$ for some $k \ge 2?$

What about $F_i = f(a_i, X_i)$, a_i are arbitrary auxiliary variables.

What about $F_i = f(X_i, X_{2i}, \dots, X_{ki})$ for some $k \ge 2?$

What about $F_i = f(a_i, X_i)$, a_i are arbitrary auxiliary variables.

Try f(a, x) = aX. X_i are i.i.d. $M(a) = E[e^{aX}]$.

What about
$$F_i = f(X_i, X_{2i}, \dots, X_{ki})$$
 for some $k \ge 2?$

What about $F_i = f(a_i, X_i)$, a_i are arbitrary auxiliary variables.

Try
$$f(a, x) = aX$$
. X_i are i.i.d. $M(a) = E[e^{aX}]$.

$$\psi = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \log M(a_i)$$

• Assume $\frac{1}{n} \sum_{i=1}^{n} \delta_{a_i} \to \alpha$

• Assume $\frac{1}{n} \sum_{i=1}^{n} \delta_{a_i} \to \alpha$

$$\psi = \int [\log M(a)] d\alpha(a)$$

• Assume
$$\frac{1}{n} \sum_{i=1}^{n} \delta_{a_i} \to \alpha$$

$$\psi = \int [\log M(a)] d\alpha(a)$$

One would expect that if there is a stationary process α with k dimensional marginal $\alpha_{1,2,\ldots,k}$ such that, for every k

$$\frac{1}{n}\sum_{i=1}^n \delta_{a_i,a_{i+1},\dots,a_{i+k-1}} \to \alpha_{1,2,\dots,k}$$

• Assume
$$\frac{1}{n} \sum_{i=1}^{n} \delta_{a_i} \to \alpha$$

$$\psi = \int [\log M(a)] d\alpha(a)$$

One would expect that if there is a stationary process α with k dimensional marginal $\alpha_{1,2,...,k}$ such that, for every k

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{a_i, a_{i+1}, \dots, a_{i+k-1}} \to \alpha_{1, 2, \dots, k}$$

 $\psi = \psi(\alpha)$ may exist for nice π

 $\blacksquare F_n(x_1, x_2, \dots, x_n) \text{ maps } \mathcal{X}^n \to \mathbb{R}$

■ $F_n(x_1, x_2, ..., x_n)$ maps $\mathcal{X}^n \to \mathbb{R}$ ■ $\{F_n\}$ is almost additive if

 $F_n(x_1, x_2, \dots, x_n) \text{ maps } \mathcal{X}^n \to \mathbb{R}$ $\{F_n\} \text{ is almost additive if}$

 $|F_{n+m} - F_n - T_n F_m| \le C$ where $T_n F_m = F_m(x_{n+1}, x_{n+2}, \dots, x_{n+m}).$

 $F_n(x_1, x_2, \dots, x_n) \text{ maps } \mathcal{X}^n \to \mathbb{R}$ $\{F_n\} \text{ is almost additive if}$

$$|F_{n+m} - F_n - T_n F_m| \le C$$

where $T_n F_m = F_m(x_{n+1}, x_{n+2}, \dots, x_{n+m})$.
Example. $F_n = \sum_{i=1}^{n-m} f(x_i, x_{i+1}, \dots, x_{i+m})$

• $\{F_n\}$ defines a continuous linear functional $\mathcal{F}(\cdot)$ on $\mathcal{M}_s(\mathcal{X})$.

• $\{F_n\}$ defines a continuous linear functional $\mathcal{F}(\cdot)$ on $\mathcal{M}_s(\mathcal{X})$.

If $\{x_i^n\}$ looks like a sample from α , then

• $\{F_n\}$ defines a continuous linear functional $\mathcal{F}(\cdot)$ on $\mathcal{M}_s(\mathcal{X})$.

If $\{x_i^n\}$ looks like a sample from α , then

$$\lim_{n \to \infty} \frac{1}{n} F_n(x_1^n, \dots, x_n^n) = \lim_{n \to \infty} \frac{1}{n} \int F_n \, d\alpha = \mathcal{F}(\alpha)$$

 \blacksquare { F_n } defines a continuous linear functional $\mathcal{F}(\cdot)$ on $\mathcal{M}_{s}(\mathcal{X}).$ If $\{x_i^n\}$ looks like a sample from α , then $\lim_{n \to \infty} \frac{1}{n} F_n(x_1^n, \dots, x_n^n) = \lim_{n \to \infty} \frac{1}{n} \int F_n \, d\alpha = \mathcal{F}(\alpha)$ $\psi = \lim_{n \to \infty} \frac{1}{n} \log E^P \left[\exp[F_n(x_1, x_2, \dots, x_n)] \right]$

- p.16/29

 \blacksquare { F_n } defines a continuous linear functional $\mathcal{F}(\cdot)$ on $\mathcal{M}_{s}(\mathcal{X}).$ If $\{x_i^n\}$ looks like a sample from α , then $\lim_{n \to \infty} \frac{1}{n} F_n(x_1^n, \dots, x_n^n) = \lim_{n \to \infty} \frac{1}{n} \int F_n \, d\alpha = \mathcal{F}(\alpha)$ $\psi = \lim_{n \to \infty} \frac{1}{n} \log E^P \left[\exp[F_n(x_1, x_2, \dots, x_n)] \right]$ $\psi = \sup_{\mu \in \mathcal{M}_s(\mathcal{X})} [\mathcal{F}(\mu) - J(\mu)]$

– p.16/29

Replace $F_n(x_1, x_2, \ldots, x_n)$ with

Proof

Replace
$$F_n(x_1, x_2, ..., x_n)$$
 with
 $\frac{1}{k} \sum_{i=1}^{n-k+1} F_k(x_i, ..., x_{i+k-1})$

Replace
$$F_n(x_1, x_2, ..., x_n)$$
 with
 $\frac{1}{k} \sum_{i=1}^{n-k+1} F_k(x_i, ..., x_{i+k-1})$
 $\frac{1}{n} \log E[\exp[\frac{1}{k} \sum_{i=1}^{n-k+1} F_k(x_i, ..., x_{i+k-1})]]$

Replace
$$F_n(x_1, x_2, \ldots, x_n)$$
 with
$$\frac{1}{k} \sum_{i=1}^{n-k+1} F_k(x_i, \ldots, x_{i+k-1})$$

$$\frac{1}{n} \log E[\exp[\frac{1}{k} \sum_{i=1}^{n-k+1} F_k(x_i, \ldots, x_{i+k-1})]]$$

$$\sup_{\mu} [\frac{1}{k} \int F_k d\mu - J(\mu)]$$

Replace
$$F_n(x_1, x_2, \ldots, x_n)$$
 with
$$\frac{1}{k} \sum_{i=1}^{n-k+1} F_k(x_i, \ldots, x_{i+k-1})$$

$$\frac{1}{n} \log E[\exp[\frac{1}{k} \sum_{i=1}^{n-k+1} F_k(x_i, \ldots, x_{i+k-1})]]$$

$$\sup_{\mu} [\frac{1}{k} \int F_k d\mu - J(\mu)]$$
Let $k \to \infty$

Replace
$$F_n(x_1, x_2, \ldots, x_n)$$
 with
$$\frac{1}{k} \sum_{i=1}^{n-k+1} F_k(x_i, \ldots, x_{i+k-1})$$

$$\frac{1}{n} \log E[\exp[\frac{1}{k} \sum_{i=1}^{n-k+1} F_k(x_i, \ldots, x_{i+k-1})]]$$

$$\sup_{\mu} [\frac{1}{k} \int F_k d\mu - J(\mu)]$$

$$\operatorname{Let} k \to \infty$$

$$\sup_{\mu} [\mathcal{F}(\mu) - J(\mu)]$$

Suppose $H_n((a_1, x_1), \dots, (a_n, x_n))$ maps $(\mathcal{A} \times \mathcal{X})^n \to \mathbb{R}$ is almost additive.

Suppose H_n((a₁, x₁), ..., (a_n, x_n)) maps (A × X)ⁿ → ℝ is almost additive.
F_n(a₁,..., a_n) given by log E^P[exp[H_n((a₁, x₁), ..., (a_n, x_n))]
is almost additive and Suppose H_n((a₁, x₁), ..., (a_n, x_n)) maps (A × X)ⁿ → ℝ is almost additive.
F_n(a₁,..., a_n) given by log E^P[exp[H_n((a₁, x₁), ..., (a_n, x_n))]
is almost additive and

$$\mathcal{F}(\alpha) = \sup_{\beta \in \mathcal{M}_s(\alpha)} [\mathcal{H}(\beta) - J^*(\beta)]$$

We can allow some periodicity.

■ We can allow some periodicity.

$$H_n((a_1, x_1, x_2), (a_2, x_3, x_4), \dots, (a_n, x_n, x_{2n}))$$

We can allow some periodicity. *H_n*((*a*₁, *x*₁, *x*₂), (*a*₂, *x*₃, *x*₄), ..., (*a_n*, *x_n*, *x_{2n}*) Just view (*x*_{2i-1}, *x*_{2i}) as *y_i*.

We can allow some periodicity. *H*_n((*a*₁, *x*₁, *x*₂), (*a*₂, *x*₃, *x*₄), ..., (*a*_n, *x*_n, *x*_{2n}) Just view (*x*_{2*i*-1}, *x*_{2*i*}) as *y_i*. *π*^{*}(*y*, *dy'*) = *π*(*x*₂, *dx'*₁)*π*(*x'*₁, *dx'*₂)

The supremum is over β with \mathcal{A} marginal α .

The supremum is over β with A marginal α. J*(β) is given by

$\int h(\beta(\omega|da_1, dx_1); \alpha(\omega|da_1) \times \pi(x_0, dx_1)) d\beta$

The supremum is over β with A marginal α. J*(β) is given by

 $\int h(\beta(\omega|da_1, dx_1); \alpha(\omega|da_1) \times \pi(x_0, dx_1))d\beta$

We use this repeatedly to evaluate when $F_i = f(X_i, X_{2i})$

The supremum is over β with A marginal α. J*(β) is given by

 $\int h(\beta(\omega|da_1, dx_1); \alpha(\omega|da_1) \times \pi(x_0, dx_1))d\beta$

We use this repeatedly to evaluate when $F_i = f(X_i, X_{2i})$

Write

$$\sum_{i=1}^{2^{k}n} F_{i} = \sum_{i=1}^{n} F_{i} + \sum_{j=1}^{k-1} \sum_{i=2^{j}n+1}^{2^{j+1}n} F_{i}$$

When k is large the initial term can be ignored.

When k is large the initial term can be ignored.
H⁰ = 0 and H¹(a₁,..., a_{2^{k-1}n}) is given by

$$\log E^{P}[\exp[\sum_{i=1}^{2^{k-1}n} f(a_i, x_{2^k n+2i})]]$$

When k is large the initial term can be ignored.
H⁰ = 0 and H¹(a₁,..., a_{2^{k-1}n}) is given by

$$\log E^{P}[\exp[\sum_{i=1}^{2^{k-1}n} f(a_i, x_{2^k n+2i})]]$$

Consider now $H^2(a_1, \ldots, a_{2^{k-2}n})$ given by

 $\log E[\exp[H^{1}(x_{2^{k-1}n+1}, x_{2^{k-1}+2}, \dots, x_{2^{k}n}) + \sum_{i=1}^{2^{k-2}n} f(a_{i}, x_{2^{k-1}n+2i})]]$

$= \mathcal{F}_0(\alpha) = 0. \ \lambda = (\lambda_1, \lambda_2)$

$\mathcal{F}_0(\alpha) = 0. \ \lambda = (\overline{\lambda_1, \lambda_2})$ $\lambda = \lambda T^{-2}. \ \lambda_2^* = \frac{1}{2} [\lambda + \lambda T^{-1}]$

$$\mathcal{F}_{0}(\alpha) = 0. \ \lambda = (\lambda_{1}, \lambda_{2})$$
$$\lambda = \lambda T^{-2}. \ \lambda_{2}^{*} = \frac{1}{2} [\lambda + \lambda T^{-1}]$$
$$\mathcal{F}_{j}(\alpha) = \sup_{\lambda:\lambda_{1}=\alpha} \left[E^{\lambda} [f(a_{1}, X_{2})] + \mathcal{F}_{j-1}(\lambda_{2}^{*}) - J_{\alpha}(\lambda) \right]$$

$$\mathcal{F}_{0}(\alpha) = 0. \ \lambda = (\lambda_{1}, \lambda_{2})$$
$$\lambda = \lambda T^{-2}. \ \lambda_{2}^{*} = \frac{1}{2} [\lambda + \lambda T^{-1}]$$
$$\mathcal{F}_{j}(\alpha) = \sup_{\lambda:\lambda_{1}=\alpha} \left[E^{\lambda} [f(a_{1}, X_{2})] + \mathcal{F}_{j-1}(\lambda_{2}^{*}) - J_{\alpha}(\lambda) \right]$$
$$\psi = \lim_{k \to \infty} \frac{\mathcal{F}_{k}(\alpha)}{2^{k}}$$

$$\mathcal{F}_{0}(\alpha) = 0. \ \lambda = (\lambda_{1}, \lambda_{2})$$

$$\lambda = \lambda T^{-2}. \ \lambda_{2}^{*} = \frac{1}{2} [\lambda + \lambda T^{-1}]$$

$$\mathcal{F}_{j}(\alpha) = \sup_{\lambda:\lambda_{1}=\alpha} \left[E^{\lambda} [f(a_{1}, X_{2})] + \mathcal{F}_{j-1}(\lambda_{2}^{*}) - J_{\alpha}(\lambda) \right]$$

$$\psi = \lim_{k \to \infty} \frac{\mathcal{F}_{k}(\alpha)}{2^{k}}$$
The limit is independent of α .

$k \ge 3$ is much harder.

$k \geq 3$ is much harder.

The iteration from one step to another does not involve a fixed proportion.

$k \ge 3$ is much harder.

- The iteration from one step to another does not involve a fixed proportion.
- The periodicity which was always two 2 when k = 2 varies at each step.

• $k \geq 3$ is much harder.

- The iteration from one step to another does not involve a fixed proportion.
- The periodicity which was always two 2 when k = 2 varies at each step.
- "a" is a much more complex object!

$k \geq 3$ is much harder.

- The iteration from one step to another does not involve a fixed proportion.
- The periodicity which was always two 2 when k = 2 varies at each step.
- |a''| is a much more complex object!
- $\mathbf{A} = \mathcal{X}^{k_p}$ and varies with p.

$k \geq 3$ is much harder.

- The iteration from one step to another does not involve a fixed proportion.
- The periodicity which was always two 2 when k = 2 varies at each step.
- "a" is a much more complex object!
- $\mathbf{A} = \mathcal{X}^{k_p}$ and varies with p.
- **The procedure is the same.**