rge Deviations of nonconventional sums.

S.R.S. Varadhan
Courant Institure, NYU

Florence
Aug 27, 2012



)int work with Yuri Kifer






lim llog Ep[exp[z || =

n—oo M, —
X; are i.i.d.F; = f(X;). The answer is trivial.

1
¥ = lim — log[E[e/®)]]" = log E[e/™)]
T

—p.3/29



lim llog Ep[exp[z || =

n—oo N, —
X; are i.i.d.F; = f(X;). The answer is trivial.

1
¥ = lim — log[E[e/®)]]" = log E[e/™)]
T

What if F, = f(XZ, XQZ) 0]} f(Xu X9, ... ,X]ﬂ) for
Somexk.

—p.3/29



2t us tryk = 2



2t us tryk = 2
rite - = 2”5 with 5 odd.



Let us tryk = 2
Write : = 2”5 with 5 odd.
If 7 > %, f(x;,x2;) is disconnected.

— p.4/29



Let us tryk = 2

Write : = 2”5 with 5 odd.

If 7 > %, f(x;,x2;) is disconnected.
Integrate them

— p.4/29



Let us tryk = 2

Write : = 2”5 with 5 odd.

If 7 > %, f(x;,x2;) is disconnected.
Integrate them

110g Elexp[f(X,Y)]]

— p.4/29



Let us tryk = 2

Write : = 2”5 with 5 odd.

If 7 > %, f(x;,x2;) is disconnected.
Integrate them

110g Elexp[f(X,Y)]]

1<Jj<3

— p.4/29



Let us tryk = 2

Write : = 2”5 with 5 odd.

If 7 > %, f(x;,x2;) is disconnected.
Integrate them

110g Elexp[f(X,Y)]]

1<i<}

s log Elexp[f(X,Y) + f(Y, Z)]]

— p.4129



Let us tryk = 2

Write : = 2”5 with 5 odd.

If 7 > %, f(x;,x2;) is disconnected.
Integrate them

110g Elexp[f(X,Y)]]

1<i<}

s log Elexp[f(X,Y) + f(Y, Z)]]

Z 2r1+1 log E[GXP[Z f(Xi, Xiv1)]]

= =
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k>3

There Is a nice way of doing this. Consider the
graphl,2,..., kN as vertices. The edges are
n<<mfori=223, ... . kandl <n < N.

The graph is (very ) disconnected.

D1, P2, .. .,Pm are the primesin, 3,... k
L= jpi' - Dy

9 coprime top;, pa, . . ., Pm

Fix ¢ and consider the subgraph

Gy ={p'py - P} C [1,q]

Let its size b€,
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¢, 1S nondecreasing iq. Increases by eithéror 1.

For eacly there us a uniqué&’y of size/.
ci(f) = log Elexp[) e, f(Xi, Xaiy - -, Xpi)]
Large components are insignificant.

If p, Is the limit of ratio of the number of
components of sizéto n,

> ol =1

U(f) = pecif)

>k
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pye 1S determined as follows.

Among{ap}' - - - p'} that are at most, what is the
proportion of siz¢/?

Among{p;' - - - p,» } that are at most what
proportion Is of size?

There are numberg/?) such thap;* - - - p/ is of
size/ If and only if

ac(l) < n <ac(l+1)
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1 a 1
c({+1) < n = c(0)

the Density Is[c(lﬁ) c(ﬁ%l-l)]

But a has to be coprime tp;, ps, ..., pm

7 1\ 1 1
Pt = Hz‘=1(1 B E)[c(ﬁ) c(€+1)]
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X, is Markov. Transition probability-(z, dy).

(Tu)(w) = [ /Puly)n(a. dy
p(T) is the spectral radius.

i = log p(T)
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Adx, dy) is a distribution with both marginals equal
to somey.

Az (dy) is the conditional.
h(B,a) = [log dB = [ L log Lda

100 = [ B (o)l
= h(\; p(dx)mw(x, dy))

U(f) = supreml S fdu — J(N)]
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X, Is still Markov as before.
;= f(Xi, Xiq1)

o = sup / F(, )M (dz, dy) — (V)

Can handler; = f(X;, X;.1,... X;.%) by one
formula.
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What aboutF; = f(X;, Xy, ..., X};) for some
k> 27?

What aboutt; = f(a;, X;), a; are arbitrary auxiliary
variables.

Try f(a,z) = aX. X; are i.i.d. M (a) = E[e**].

1
¢ = lim — > log M(a;)

1=1
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Assume- > | 0, — «

o = / log M (a)|da(a)

One would expect that Iif there Is a stationary process
a With £ dimensional marginak; » ., such that, for
everyk

.....

n

1 Z

5 5CL7;,CL7;_|_1,...,CLZ'_|_]€_1 —7 &1,2,...,143
1=1

Y = 1(a) may exist for nicer
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{a?} can even depend on We will call such a
sequence ofi—tuplesa like.

F,(x1,x9,...,2,) MapsX”™ — R
{F,} is almost additive if

‘Fn—l—m_Fn_TnFm’ S C
whereT, F,,, = Fin(Tni1, Tnioy e ooy Tnm)-

Example.F;, = > 0" f(@4, Tiv1, - - -, Tipm)
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1 1
lim —F,(z%,...,z)) = lim — [ F,da = F(«)
n—oo N, n—0o0 1

|
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{F,} defines a continuous linear function&l-) on
M (X).
If {27} looks like a sample from, then

1 1
lim —F,(z%,...,z)) = lim — [ F,da = F(«)
n—oo N, n—0o0 1
.1 p
Y = lim —log B [exp[Fn(xl, T, . .. ,xn)]]
n—oo 1

Y= sup [F(u)—J(uw)
pEM(X) —p16/29
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eplacel, (z1, xa, . . ., ;) With
) ?__fﬂ Fy(xi, .., Tigk—1)

log Elexp[: S0 Fi(a, ..

 Tith—1)]]




r 00f
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Llog Elexp|s Yoim VI Bz, Tivke1)]

= sup, [t [ Frdp — J ()]
mlLetk — o0

= sup, [F(p) — J(w)]
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SupposeH, ((a1,x1), ..., (an, x,)) MaAPS
(A x X)" — R is almost additive.

F,(ay,...,a,) given by

log B [exp[H,,((a1,21), . .., (Gn, )]

IS almost additive and

Fla) = sup [H(B) — J(B)]

BeM;(a)

—p.18/29



e can allow some periodicity.



e can allow some periodicity.

n((afla L1, 332), (&2, L3, 564)7 © oo g (a”n7 L, ann)



We can allow some periodicity.

H,((a1,x1,x9), (as, x3,24), ..., (Qn, Tpn, Top)

Just ViEW(l‘QZ'_l, 3327;) asSy;.

—p.19/29



We can allow some periodicity.

Hn((ab L1, 372), (&2, X3, I4), JEIEED (ana Ln s x2n)
Just ViEW(l‘QZ'_l, 3327;) asSy;.
T (y, dy’) = w(xg, dxy) (), day)
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The supremum is ovet with A marginala.
J* () is given by

/h(@(w\dal,dxl);a(wydal) « (o, dzy))dA

We use this repeatedly to evaluate when

Write

k-1 27tin

2kn
Y F = ZF +y Y R
1=1 7=1 ¢=2in+1
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Whenk is large the initial term can be ignored.
H’ =0andH(a4,...,au-1,)is given by

2k—1p

log E* [exp] Z S(ais Toryi0;)]]

1=1
Consider nowH?(ay, . . . , as-—2, ) given by

log Elexp|H" (2gs-1p1 1, Tok—149, - - . , Toky )

2k—2p

T Z fai, Tor-1549;)]]
i=1
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= Fo(a) = 0. A= (A1, Ag)
A= AT 2\ =3A+ 2T 1]

Fila) = A:SAUEQ B f(a1, Xo)] + Fj1(A3) — Ja(N)]
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.F()(Oé) = (). A\ = ()\1, )\2)
A=AT"2 )\ = SN+ 2T

The limit Is Independent of.
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k > 3 1S much harder.

The iteration from one step to another does not
Involve a fixed proportion.

The periodicity which was always twibwhenk = 2
varies at each step.

"a" IS a much more complex object!
A = X" and varies withp.
The procedure Is the same.
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