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Kardar-Parisi-Zhang ’86 (KPZ) proposed a SPDE to govern the
fluctuations of the height variable in some types of growing
interfaces. In dimension d = 1, the study of their equation has
advanced in recent years. We also mention van
Beijeran-Kutner-Spohn ’85 on the fluctuations in driven diffusive
systems in this context.

KPZ equation

Let h = ht(x) be the height function at time t and location x .
Then,

∂tht = D4ht + a
(
∇ht

)2
+ σWt

where Wt is a space-time white noise, and the middle term
introduces a nonlinear form of slope-dependent growth speed.

I The equation has difficulties in interpretation since ht is
expected to be locally Brownian, and it doesn’t make sense to
take square of a gradient of ht .
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Nontrivial classes of behaviors

The KPZ solution has different fluctuation behaviors, based on
heuristics given in KPZ ’86.

KPZ Class
When a,D, σ 6= 0,

ht(x)− Eht(x)

t1/3
⇒ ξ(x)

where ξ is nontrivial (in general some type of TW law) which
depends on initial conditions.
Also, spatial correlations are on order t2/3:〈ht(0)− Eht(0)

t1/3
;
ht(xt

2/3)− Eht(xt
2/3)

t2/3

〉
∼ C (x).
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EW Class
When a = 0 and D, σ 6= 0,

ht(x)− Eht(x)

t1/4
⇒ ξ(x)

which is Gaussian.
Here, spatial correlations are on order t1/2.

Trivial Class
When a = D = 0 and σ 6= 0, marginal distributions are Gaussian in
usual diffusive scale t1/2 and of course no spatial correlations.
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General question

How to make rigorous sense of the KPZ equation? Can one derive
it from microscopic interactions?

Most of the work has been done in terms of models which allow a
microscopic Cole-Hopf formula (due to Gärtner), namely simple
exclusion and directed polymer models.

These models are weakly asymmetric where the weak asymmetry is
O(N−1/2), as opposed to the asymmetry O(N−1) which comes up
in large deviations of the density field.
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References for simple exclusion

Bertini-Giacomin ’97 (starting from the invariant measure νρ)
Amir-Corwin-Quastel ’11; Sasamoto-Spohn ’10 (starting from the
step profile).

Remark
Our focus here will be on a somewhat different approach which
involves a ‘martingale characterization’.
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On the Cole-Hopf transform

Recall the KPZ equation

∂tht = D4ht + a
(
∇ht

)2
+ σWt .

Define
Zt = exp

{ a

D
ht(x)

}
.

Then,

∂tZt =
a

D

(
∂tht

)
Zt

= D4Zt +
aσ

D
ZtWt

which is a (well-posed) stochastic heat equation.
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References
Hairer ’11 has given a ‘rough paths’ interpretation of the KPZ
equation, which approximates the nonlinear term in a certain way.
In particular, he showed that logZt , where Zt solves the stochastic
heat equation, satisfies this intepreted KPZ equation (on a torus).

Remark
This nicely ties in with the BG and ACQ results! We have been
looking at how to treat other nearest-neighbor microscopic models,
such as zero-range, which have less nice properties.
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(Microscopic) Height function

Notation
ηt = {ηt(x) : x ∈ Z} is the configuration at time t.
Jx(t) is the current through the bond (x − 1, x) up to time t.

What is the (microscopic) height function?

Ht(x) =


J0(t)−

∑x−1
y=0 ηt(y) for x ≥ 1

J0(t) for x = 0

J0(t) +
∑−1

y=x ηt(y) for x ≤ −1.
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As an example, the much studied Corner-Growth model,
corresponds to the height function in simple exclusion starting
from the Step Initial Condition.

Of course, with respect to a fixed asymmetry p > q much work
shows that the fluctuations of Ht are in the KPZ class, and limits
have been identified, with respect to a variety of initial conditions
(Baik-Deift-Johansson, Tracy-Widom, Praehofer-Spohn,
Ferrari-Spohn, Balazs-Quastel-Seppalainen, and others).

Sunder Sethuraman University of Arizona conservative KPZ equation



Brief remarks on KPZ equation Microscopic systems and assumptions Zero-range model Martingale derivations

0 

0 

Ht(x) 
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‘Conservative’ KPZ equation

Since
Ht(x)− Ht(x + 1) = ηt(x)

may be viewed as a ‘discrete gradient’, then one might consider
the equation the gradient Yt = ∇ht satisfies:

∂tYt = D4Yt + a∇
(
Yt

)2
+ σ∇Wt

which however has the same difficulties, when a 6= 0, as the KPZ
equation:

∂tht = D4ht + a
(
∇ht

)2
+ σWt
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Fluctuation field

The microscopic analog of Yt = ∇ht , as in BG ’97, is the
fluctuation field of the diffusively scaled process, with a certain
weak asymmetry, in a reference frame moving with a process
characteristic speed.

Goal: We derive, in a class of interactions, that all limit points of
the fluctuation field satisfy a form of the ‘conservative’ KPZ
equation.
However, among other remarks which we will make, uniqueness of
the limit is not established. The hope is to use the result to make
inroads with the height function fluctuations, although this is not
our purpose here.
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General Model

We consider particle systems ηNt on Ω = {0, 1, 2, . . .}Z with
nearest-neighbor weakly-asymmetric jump probabilities

pN =
1

2
+

a

2Nγ
and qN =

1

2
− a

2Nγ

and generator, with time sped up by N2,

LN f (η) = N2
∑
x∈Z

{
bRx (η)pN∇x ,x+1f (η)

+bLx (η)qN∇x+1,x f (η)
}
.

Here, ∇x ,y f (η) = f (ηx ,y )− f (η) corresponds to moving a particle
from x to y .

Also, a ∈ R and γ > 0 control the strength of the asymmetry.
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Main Assumptions

Aside from some technical assumptions, the main hypotheses are
the following.

I ‘Gradient’ dynamics: bRx = τxb
R , bLx = τxb

L and
bR − bL = c − τ1c for some function c = c(η).
Here, the invariant measure νρ, with density ρ, will be
invariant for all choices of a and γ. Also, νρ is
translation-invariant, sufficiently mixing and ergodic.

I Spectral gap estimate on a cube Λ` with width `:∥∥∥W`,ξ

(∑
x∈Λ`

η(x)
)∥∥∥

L2(νρ)
= O(`2), uniformly in the outside

variables ξ.
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I Equivalence of ensembles: Good expansion of

Eνρ
[
f (η)|y =

1

2`+ 1

∑
x∈Λ`

η(x), ξ
]

= ϕf (ρ) + (y − ρ)ϕ′f (ρ) +
1

2

{
(y − ρ)2 −

σ2
` (ρ)

2`+ 1

}
ϕ′′f (ρ) + · · · .

Here, ϕf (z) = Eνz [f (η)] and νz is the adjusted measure with
chemical potential so that density is z .

I Initial conditions: Begin under νρ, or measures µN such that
supN H(µN ; νρ) <∞ and initial density fluctuations are say
Gaussian.
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Specific processes

Models falling into this class are zero-range models, and exclusion
systems with various ‘kinetic’ constrains, or with speed-change.
We note the invariant measure νρ doesn’t have to be a product
measure.

Hydrodynamics

Formally, the hydroynamic equation for ρ = ρ(t, x), when the
asymmetry pN − qN = O(N−1) and γ = 1, is

∂tρ+
a

2
∇ϕb(ρ) =

1

2
∆ϕc(ρ).

Here, b = bR + bL.
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Fluctuation field

We recall a result on ‘equilibrium fluctuations’. Let γ = 1 and the
asymmetry pN − qN = O(N−1). Define the field

Y N
t (H) =

1√
N

∑
x∈Z

H
( x
N

)(
ηNt (x)− ρ

)
.

Then, starting from the invariant measure νρ, Y N
t converges in

D([0,T ],S′(R)) to the Ornstein-Uhlenbeck process given by

dYt =
1

2
ϕ′c(ρ)∆Ztdt +

a

2
ϕ′b(ρ)∇Ytdt +

√
ϕb(ρ)

2
∇Wt

where Wt is a space-time white noise.

The drift term, as is well known, can be understood in terms of the
characteristic velocity (a/2)ϕ′b(ρ) from linearizing the
hydrodynamic equation.
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One can remove it, however, by observing the field in the reference
frame shifted, according to process characteristic velocity, by

1

N

(pN − qN)ϕ′b(ρ)tN2

2
=

aϕ′b(ρ)tN

2Nγ
.

Define

YN,γ
t (H) =

1√
N

∑
x∈Z

H
( x

N
−

aϕ′b(ρ)tN

2Nγ

)(
ηNt (x)− ρ

)
.

If γ = 1, the last result is equivalent to YN,γ
t converging to the

unique solution of

d Yt =
1

2
ϕ′c(ρ)∆Yt dt +

√
ϕb(ρ)/2∇Wt .
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‘Crossover’

Although we will be primarily interested in when the asymmetry
pN − qN = O(N−1/2) corresponds to γ = 1/2, one might ask what
happens when 1/2 < γ ≤ 1.

It turns out, there is no effect–the asymmetry is not strong enough
to influence the fluctuations. For simple exclusion, this was
observed in Sasamoto-Spohn ’10, Goncalves-Jara ’12.

Theorem. When 1/2 < γ ≤ 1, we have that YN,γ
t converges to the

solution of the equation for γ = 1.
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When γ = 1/2, however, the asymmetry has nontrivial influence on

the limit of YN,γ
t .

A form of the nonlinear term, ∇(Yt)
2, in the ‘conservative’ KPZ

equation is picked up.

At this point, to be more concrete in this talk, we focus on
zero-range processes.
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Zero-range process

ZRP follows a collection of continuous-time random walks on a
lattice.

–Infinitesimally, particle interaction at i only with # particles at i .
(Not with those at possible jump locations.)

–So, range of interaction is ‘zero’
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ZRP Dynamics

“at a vertex with k particles, one of the particles displaces by j
with rate (g(k)/k)p(j).”

I g : N0 → R+, g(0) = 0, g(k) > 0 for k ≥ 1.

I p(·) is a (translation-invariant) jump probability on lattice Zd .
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Cases

I g is on “linear order”, e.g. g(k) = k corresponds to
independent particles.

I g is “sublinear”, e.g. g(k) = kγ for γ ∈ (0, 1)

I g is bounded, e.g. g(k) = 1[k≥1].

I g corresponds to “aggregation” phenomena, g(k) ↓ as k ↑ ∞,
e.g. g(k) = 1[k≥1](1 + c/k), c > 2 (Jeon-March-Pittel ’00,
Grosskinsky-Shütz-Spohn ’03, Armendiaz-Loulakis ’08,
Beltran-Landim ’12)
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The zero-range model is interesting also because it possesses
different equilibriation behavior with respect to different types of g
which can be measured by “mixing” or “spectral gap” estimates.

Spectral gap

Let W`(k) be the inverse of the spectral gap of the process defined
on the cube Λ` = {−`, . . . , `}d with k particles, when the
transition probability p is symmetric and nearest-neighbor
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Different types of spectral gaps

I g is on linear order: W`(k) ∼ C`2. S. - Landim - Varadhan ’96
Here, ‘linear’ means supk |g(k + 1)− g(k)| ≤ a0, and
g(k + b0)− g(k) ≥ b1 > 0

I g is sublinear: For the example mentioned (g(k) = kγ),
W`(k) = `2(1 + ρ)1−γ where ρ = k/`. Nagahata ’10

I g is bounded: For the case given (g(k) = 1[k≥1]),
W`(k) = `2(1 + ρ)2. Morris ’06
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ZRP Assumptions

WA p(·) is weakly asymmetric and nearest-neighbor: For a ∈ R,

p(1) = 1/2 +
a

2N1/2
and p(−1) = 1/2− a

2N1/2

——————————————————-
On the function g , we assume the following.

LG supk |g(k + 1)− g(k)| ≤ a0.

SP The spectral gap satisfies

Eνρ

[
W`

( ∑
x∈Λ`

η(x)
)2]

≤ C (ρ)`4.

Remarks

I The [LG] assumption is useful in construction.

I The [SP] assumption is satisfied by the g ’s mentioned on
previous slide.
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Configurations and Generator

The process ηNt = ηt is defined on space Ω = {0, 1, 2, . . .}Z

Recall, a configuration is ηt = {ηt(i) : i ∈ Z}.
Here, ηt(i) = # particles at i at time t
——————————————————————

ZRP is a Markov process ηt on Ω with formal generator.

(LNφ)(η) = N2
∑
x

{
pNg(η(x))

(
φ(ηx ,x+1)− φ)

+qNg(η(x + 1))
(
φ(ηx+1,x)− φ)

}
In terms of previous notation, bRx = g(η(x)), bLx = g(η(x + 1)) and
b(η) = 2g(η(0)). The system is ‘gradient’ where c(η) = g(η(0)).
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Invariant measures

There exists a family of invariant measures indexed by density.

Invariant measures
For 0 ≤ α <∞,

ν̄α =
∏
i∈Zd

µ̄α (Andjel ′81)

where

µ̄α(k) =
1

Zα

αk

g(1) · · · g(k)
for k ≥ 1;

=
1

Zα
for k = 0.
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Reparametrization

It will be convenient to reparametrize in terms of ‘density’

ρ(α) =
1

Zα

∑
k≥0

k
αk

g(k)!

Can show ρ = ρ(α) : [0,∞)→ [0,∞) is invertible, so can write

α = α(ρ)

µρ = µ̄α(ρ)

νρ = ν̄α(ρ) =
∏
i∈Zd

µρ.
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Mean departure rate

In fact,
α(ρ) = Eνρ [g(η)],

is the ‘mean-rate’ of departure from a site, which will appear in
later results. [In terms of previous notation, α(ρ) = ϕg (ρ).]

I g(k) = k . Then, α(ρ) = ρ.

I g is “linear”. Then, c1ρ ≤ α(ρ) ≤ c2ρ.

I g(k) = kγ for γ ∈ (0, 1). Then α(ρ) ↑ ∞ and α(ρ)/ρ ↓ 0

I g(k) = 1[k≥1]. Then, α(ρ) = ρ/(1 + ρ).
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Martingale derivations

Let γ = 1/2. We will try to show that limits of YN
t := YN,γ

t solve
a form of the following ‘conservative’ KPZ equation:

∂t Yt =
α′(ρ)

2
4Yt dt + aα′′(ρ)∇

(
Yt

)2
+
√
α(ρ)∇Wt .

Recall, in zero-range context, the characteristic velocity shift

aϕ′b(ρ)Nt

2Nγ
= aα′(ρ)N1/2t

Then, the scaled fluctuation field, observed along process
characteristics, is

YN
t (G ) :=

1√
N

∑
x

G
( x

N
− aα′(ρ)N1/2t

)(
ηNt (x)− ρ

)
.
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Note: We will abbreviate G
(

x
N − aα′(ρ)N1/2t

)
= Ga,t

(
x
N

)
.

Also, to simplify the discussion, we start under the invariant
measure νρ.
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Stochastic differential
Write

d YN
t (G ) =

[ ∂
∂t

+ LN

]
YN

t (G )dt + dMN
t (G ).

Here,

LN YN
t (G ) =

N2

√
N

∑
x

{
pNg(ηt(x))

(
Ga,t

(x + 1

N

)
− Ga,t

( x
N

))
−qNg(ηt(x + 1))

(
Ga,t

(x + 1

N

)
− Ga,t

( x
N

))}

∼ 1

2

N2

√
N

∑
x

4Ga,t

(
x
N

)
N2

[
g(ηt(x))− α(ρ)

]
+

aN2

√
N
√
N

∑
x

∇Ga,t

(
x
N

)
N

[
g(ηt(x))− α(ρ)

]
.

We were able to substract ‘α(ρ)’ as ∇G and 4G sum to zero.
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Stochastic differential
Write

d YN
t (G ) =

[ ∂
∂t

+ LN

]
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t (G )dt + dMN
t (G ).

Here,

LN YN
t (G ) =

N2

√
N

∑
x

{
pNg(ηt(x))

(
Ga,t

(x + 1

N

)
− Ga,t

( x
N

))
−qNg(ηt(x + 1))

(
Ga,t

(x + 1

N

)
− Ga,t

( x
N

))}
∼ 1

2

N2

√
N

∑
x

4Ga,t

(
x
N

)
N2

[
g(ηt(x))− α(ρ)

]
+

aN2

√
N
√
N

∑
x

∇Ga,t

(
x
N

)
N

[
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]
.
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Also,

∂

∂t
YN

t (G ) = −aα′(ρ)N1/2

√
N

∑
x

∇Ga,t

( x
N

)[
ηt(x)− ρ

]
.

Together,[ ∂
∂t

+ LN

]
YN

t (G )

∼ 1

2
√
N

∑
x

4Ga,t

( x
N

)[
g(ηt(x))− α(ρ)

]
+
a

2

∑
x

∇Ga,t

( x
N

)[
g(ηt(x))− α(ρ)− aα′(ρ)(ηt(x)− ρ)

]
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The martingale MN
t (G ) has quadratic variation

〈MN
t (G )〉

=
N2

√
N

2

∫ t

0

∑
x

(
∇Ga,t

(
x
N

))2

N2

[
pNg(ηs(x)) + qNg(ηs(x + 1))

]
ds

→ tα(ρ)‖∇G‖2
L2(R)

in probability, since we start from the ergodic measure νρ.

Remark
The idea, as usual, now is to close these equations in terms of the
fluctuation field itself.
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Boltzmann-Gibbs principles

One needs to generalize Brox-Rost’s Boltzmann-Gibbs principle:

Eνρ

∣∣∣ ∫ t

0

1√
N

∑
x

4G (x/N)
[
g(ηt(x))− α(ρ)

]
− 1√

N

∑
x

4G (x/N)α′(ρ)
[
ηt(x)− ρ

]
ds
∣∣∣2 = o(1).

This is enough for one of the terms. But, the nonlinearity gives a
term with no normalization.

We need to replace∫ t

0

∑
x

∇Ga,t(x/N)
{
g(ηs(x))− α(ρ)− α′(ρ)

[
ηs(x)− ρ

]}
ds.
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A generalized Boltzmann-Gibbs principle

We show that

Eνρ

∣∣∣ ∫ t

0

∑
x

∇G (x/N)
[
g(ηs(x))− α(ρ)− α′(ρ)

(
ηs(x)− ρ

)]
− α′′(ρ)

2

∑
x

∇G (x/N)
[(
η

(`)
s (x)− ρ

)2 − σ2(ρ)

`

]
ds
∣∣∣2

≤ c(G )
[ t`
N

+
t2N2

`3

]
.

Here, σ2(ρ) = Varνρ(η(0)) and

η(`)(x) =
1

2`+ 1

∑
|y |≤`

η(y + x).
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Remarks

I Although there is no space average, we are taking advantage
of the time average. The main tool is analysis of H−1 norm
bounds.

We will take ` = εN, introducing another scale.

I Assing ’07, for symmetric simple exclusion in d = 1, showed a
related “Boltzmann-Gibbs principle” by a different method
using the duality of the process.
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We can show that {YN
t } and {MN

t } are tight on D([0,T ];H−4)
and limit points are concentrated on continuous paths.

Then, subsequentially,

MN′
t (G ) → Mt(G )

which has quadratic variation tα(ρ)‖∇G‖2
L2(R)

(a BM by Levy’s thm).
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Looking at the term in the generalized Boltzmann-Gibbs estimate,
with ` = εN,∫ t

0

∑
x

∇G (x/N)
[(
η

(`)
s (x)− ρ

)2 − σ2(ρ)

`

]
ds,

define now

AN,ε
t (G ) =

∫ t

0

1

N

∑
x

∇G (x/N)
[
YN

s

(
(2ε)−11[x/N−ε,x/N+ε]

)]2
ds

One has, subsequentially,

lim
N′↑∞

AN′,ε
t (G ) =

∫ t

0

∫
R
∇G (x)

[
Ys

(
(2ε)−11[x−ε,x+ε]

)
dxds

:= Aεt(G )
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Then, plugging into the Boltzmann-Gibbs estimate, with ` = εN,
we have

Eνρ

∣∣∣ ∫ t

0

∑
x

∇Ga,s(x/N)
[
g(ηs(x))− α(ρ)− α′(ρ)

(
ηs(x)− ρ

)]
ds

− α′′(ρ)

2
AN,ε

t (G )
∣∣∣2

≤ c(G )
[
tε+

t2

Nε3

]
.

Importantly, one also may conclude, after some calculations, that
{Aεt(G )} is Cauchy in L2(νρ) as ε ↓ 0.

Let At(G ) be the L2(νρ) limit.
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Now,

MN
t (G ) = YN

t (G )− YN
0 (G )− α′(ρ)

2

∫ t

0
YN

s (4G )ds

−aα′′(ρ)

2
AN,ε

t (G ) + o(1).

After taking limit on N ′ ↑ ∞ and ε ↓ 0, we obtain the following
limit characterization.
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All limit points are such that

Mt(G ) = Yt(G )− Y0(G )− α′(ρ)

2

∫ t

0
4Ys(G )− aα′′(ρ)

2
At(G )

is a continuous martingale with quadratic variation
α(ρ)t‖∇G‖2

L2(R). Formally,

∂t Yt =
α′(ρ)

2
4Yt +

aα′′(ρ)

2
At +

√
α(ρ)∇Wt .

Remarks
1. One may criticize that At , which represents ∇(Yt)

2, is not
more specified than as a Cauchy limit. One can put it however in
some negative Hermite space with some work. [See Assing ’11 for
some development in the context of simple exclusion.]

2. When g is such that α′′(ρ) = 0, then the limit is an O-U
process (not in KPZ class), e.g. ‘independent particles’.
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3. Uniqueness of limit points, or of the martingale characterization
has not been shown, which would allow one perhaps to use results
for simple exclusion.

4. The same result, with possibly different initial condition, holds
when starting from µN through use of the entropy inequality.

Starting from νρ, the initial condition Y0 is a white noise, the
mean-zero Gaussian field with covariance
Eνρ [Y0(G )Y0(H)] = σ2(ρ)〈G ,H〉L2(R).
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Proof ideas

The main point is the generalized Boltzmann-Gibbs principle with
respect to function

f (η(x)) = g(η(x))− α(ρ)− α′(ρ)[η(x)− ρ].

In a nutshell, we approximate

f (ηs(x)) ∼ E [f (ηs(x))|η(`)
s (x)]

which in turn can be written

E [f (ηs(x))|η(`)
s (x)] ∼ α′′(ρ)

2

[ 1

2`+ 1

∑
|y |≤`

ηs(y)− ρ
]2

+ O(`−3/2).
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To address errors in approximation, we use the H−1 norm lemma
(which uses that νρ is invariant for both symmetric and
asymmetric versions of the process, e.g. the gradient condition).

Eνρ

(∫ t

0
f (ηs)ds

)2
≤ ct

N2
‖f ‖2
−1

where

‖f ‖−1 = sup
ϕ

{ Eνρ [f ϕ]

Dνρ(ϕ)1/2

}
and

Dνρ(φ) =
1

2

∑
x

Eνρ
[
g(η(x))(φ(ηx ,x+1)− φ)2

]
.

The spectral gap assumption will also play a role here.
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More specifically, the argument can be separated into three steps.

Step 1. [1-block estimate] We approximate, in L2(νρ),∫ t

0

∑
x

h(x)f (ηs(x))ds ∼
∫ t

0

∑
x

h(x)E [f (ηs(x))|η(`0)
s (x)]ds.

Step 2. [2-block estimate] Approximate, in L2(νρ),∫ t

0

∑
x

h(x)E [f (ηs(x))|η(`0)
s (x)]ds

∼
∫ t

0

∑
x

h(x)E [f (ηs(x))|η(`)
s (x)]ds

where ` >> `0.
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Step 3. [Equivalence of ensembles] Note that

Eνρ [f ] =
d

dz
Eνz [f ]|z=ρ = 0.

Then, approximate in L4(νρ), using local central limit theorems,∫ t

0

∑
x

h(x)E [f (ηs(x))|η(`)
s (x)]ds

∼
∫ t

0

∑
x

h(x)
α′′(ρ)

2

[
(η

(`)
s (x)− ρ)2 − σ2(ρ)

2`+ 1

]
ds.
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More on Step 2

We sketch briefly the argument for

Eνρ

[ ∫ t

0

∑
x

h(x)
{
E [f (ηs(x))|η(`0)

s (x)]− E [f (ηs(x))|η(`)
s ]
}
ds
]2

≤ ct`

N2

∑
x

h(x)2 = O
( `
N

)
——————————————————

Express

E [f (η(x))|η(`0)(x)]− E [f (η(x))|η(`)]

=
∑
r

E [f (η(x))|η(`r )(x)]− E [f (η(x))|η(`r+1)]

where `r+1 = 2`r .
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Now, we can write

Hr ,r+1 := E [f (η(x))|η(`r )(x)]− E [f (η(x))|η(`r+1)] = Sr+1ur+1

since the function is mean-zero with respect to the canonical
invariant measure on the block with width `r+1. Here, Sr+1 is the
symmetric generator on the block.

Then, after some calculation, we get the bound

‖Hr ,r+1‖−1 ≤ Eνρ [W 2(`r+1, `r+1η
`r+1(x))]1/4‖Hr ,r+1‖L4(νρ).

By the spectral gap assumption, this is less than
C`r+1 · ‖Hr ,r+1‖L4 . With equivalence of ensembles,
‖Hr ,r+1‖L4 ∼ `−1

r+1. These are the main ingredients to obtain the
desired bound.
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