Exactly solvable directed polymers in the KPZ universality class

Timo Seppäläinen

Department of Mathematics University of Wisconsin-Madison

2012

- 1. KPZ vs EW universality in 1+1 dimensional models
- 2. Three exactly solvable models in KPZ class: KPZ equation, semi-discrete polymer, log-gamma polymer
- **3.** Specific results for the log-gamma polymer: stationary process, fluctuation exponents, large deviations

Next talk by N. Zygouras: log-gamma polymer and tropical combinatorics.

Collaborators: Márton Balázs (Budapest), Firas Rassoul-Agha (Utah), Jeremy Quastel (Toronto), Nicos Georgiou (Utah), Ivan Corwin (Microsoft/MIT), Neil O'Connell (Warwick), Nikos Zygouras (Warwick), Michael Damron (Indiana)

KPZ and EW universality for 1+1 dim interface and polymer models

Characterized by fluctuation exponents and limit distributions.

KPZ and EW universality for 1+1 dim interface and polymer models

Characterized by fluctuation exponents and limit distributions.

Kardar-Parisi-Zhang (KPZ)

- time \sim *n*, spatial correlations \sim *n*^{2/3}, fluctuations \sim *n*^{1/3}
- limits related to Tracy-Widom distributions

KPZ and EW universality for 1+1 dim interface and polymer models

Characterized by fluctuation exponents and limit distributions.

Kardar-Parisi-Zhang (KPZ)

- time \sim *n*, spatial correlations \sim *n*^{2/3}, fluctuations \sim *n*^{1/3}
- limits related to Tracy-Widom distributions

Edwards-Wilkinson (EW)

- time \sim *n*, spatial correlations \sim $n^{1/2}$, fluctuations \sim $n^{1/4}$
- Gaussian limits

• growth models such as last-passage percolation, PNG, ballistic deposition

- growth models such as last-passage percolation, PNG, ballistic deposition
- particle systems with drift and nonlinear flux function (ASEP, AZRP)

- growth models such as last-passage percolation, PNG, ballistic deposition
- particle systems with drift and nonlinear flux function (ASEP, AZRP)
- directed polymers

- growth models such as last-passage percolation, PNG, ballistic deposition
- particle systems with drift and nonlinear flux function (ASEP, AZRP)
- directed polymers

This talk will focus on polymers in KPZ class.

- growth models such as last-passage percolation, PNG, ballistic deposition
- particle systems with drift and nonlinear flux function (ASEP, AZRP)
- directed polymers

This talk will focus on polymers in KPZ class.

First a brief look at **EW** class through an example.

state of the system is

a function $\sigma:\mathbb{Z}\rightarrow\mathbb{R}$

state of the system is

a function $\sigma:\mathbb{Z}\rightarrow\mathbb{R}$

Discrete-time evolution:

$$\sigma_t(k) = \sum_j \omega_{t,k}(j) \sigma_{t-1}(k+j)$$

state of the system is

a function $\sigma:\mathbb{Z}\rightarrow\mathbb{R}$

Discrete-time evolution:

$$\sigma_t(k) = \sum_j \omega_{t,k}(j) \sigma_{t-1}(k+j)$$

 $\omega_{t,k} = (\omega_{t,k}(j) : |j| \le R)$ random probability vectors, IID over (t,k)

state of the system is

a function $\sigma:\mathbb{Z}\rightarrow\mathbb{R}$

Discrete-time evolution:

$$\sigma_t(k) = \sum_j \omega_{t,k}(j) \sigma_{t-1}(k+j)$$

 $\omega_{t,k} = (\omega_{t,k}(j) : |j| \le R)$ random probability vectors, IID over (t,k)

Model introduced by Ferrari-Fontes EJP 1998.

$$v = \sum_{x} x \mathbb{E}\omega(x)$$
 $\sigma^2 = \sum_{x} (x - v)^2 \mathbb{E}\omega(x).$

$$v = \sum_{x} x \mathbb{E}\omega(x)$$
 $\sigma^2 = \sum_{x} (x - v)^2 \mathbb{E}\omega(x).$

Initially $\sigma_0(0) = 0$, IID increments $\{\sigma_0(i) - \sigma_0(i-1)\}$ with mean μ_0 .

$$v = \sum_{x} x \mathbb{E}\omega(x)$$
 $\sigma^2 = \sum_{x} (x - v)^2 \mathbb{E}\omega(x).$

Initially $\sigma_0(0) = 0$, IID increments $\{\sigma_0(i) - \sigma_0(i-1)\}$ with mean μ_0 .

Scaled height process

$$z_n(t,r) = n^{-1/4} \big\{ \sigma_{\lfloor nt \rfloor} (-\lfloor ntv \rfloor + \lfloor r\sqrt{n} \rfloor) - \mu_0 r\sqrt{n} \big\}, \quad (t,r) \in \mathbb{R}_+ \times \mathbb{R}.$$

$$\mathbf{v} = \sum_{\mathbf{x}} \mathbf{x} \mathbb{E} \omega(\mathbf{x}) \qquad \sigma^2 = \sum_{\mathbf{x}} (\mathbf{x} - \mathbf{v})^2 \mathbb{E} \omega(\mathbf{x}).$$

Initially $\sigma_0(0) = 0$, IID increments $\{\sigma_0(i) - \sigma_0(i-1)\}$ with mean μ_0 .

Scaled height process

$$z_n(t,r) = n^{-1/4} \big\{ \sigma_{\lfloor nt \rfloor} (-\lfloor ntv \rfloor + \lfloor r\sqrt{n} \rfloor) - \mu_0 r\sqrt{n} \big\}, \quad (t,r) \in \mathbb{R}_+ \times \mathbb{R}.$$

Theorem. [Balázs, Rassoul-Agha, S. 2006] $z_n(t,r) \Rightarrow Z(t,r)$ where Z is the Gaussian process

$$Z(t,r) = c_1 \iint_{[0,t] \times \mathbb{R}} p_{\sigma^2(t-s)}(r-x) \, dW(s,x) \, + \, c_2 \int_{\mathbb{R}} p_{\sigma^2 t}(r-x) B(x) \, dx$$

RAP is an example from the **EW universality class**.

RAP is an example from the **EW universality class**.

In this class also

- current of independent random walks (incl. RWRE)
- symmetric simple exclusion process
- Hammersley's serial harness process

 $\{\omega(k,x)\}$ i.i.d. environment under $\mathbb P$

 $\{\omega(k,x)\}$ i.i.d. environment under $\mathbb P$

$$Q_n(x_{\cdot}) = \frac{1}{Z_n} \exp\left\{\beta \sum_{k=1}^n \omega(k, x_k)\right\} P(x_{\cdot})$$

 $\{\omega(k,x)\}$ i.i.d. environment under $\mathbb P$

$$Q_n(x_{\cdot}) = \frac{1}{Z_n} \exp\left\{\beta \sum_{k=1}^n \omega(k, x_k)\right\} P(x_{\cdot})$$

$$Z_n = E\left[\exp\left\{\beta\sum_{k=1}^n \omega(k, X_k)\right\}\right]$$

 $\{\omega(k,x)\}$ i.i.d. environment under $\mathbb P$

$$Q_n(x_{\boldsymbol{\cdot}}) = \frac{1}{Z_n} \exp\{\beta \sum_{k=1}^n \omega(k, x_k)\} P(x_{\boldsymbol{\cdot}})$$

$$Z_n = E\left[\exp\left\{\beta\sum_{k=1}^n \omega(k, X_k)\right\}\right]$$

 $Z_{n,u} = E\left[\exp\left\{\beta\sum_{k=1}^{n}\omega(k,X_k)\right\}, X_n = u\right]$

 $\{\omega(k,x)\}$ i.i.d. environment under $\mathbb P$

$$Q_n(x.) = \frac{1}{Z_n} \exp\{\beta \sum_{k=1}^n \omega(k, x_k)\} P(x.)$$
$$Z_n = E\left[\exp\{\beta \sum_{k=1}^n \omega(k, X_k)\}\right]$$
$$Z_{n,u} = E\left[\exp\{\beta \sum_{k=1}^n \omega(k, X_k)\}, X_n = u\right]$$

k=1

Model: Huse and Henley 1985

•
$$\frac{\log Z_{n,nx} - np(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom GUE distribution)

•
$$\frac{\log Z_{n,n_X} - np(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom GUE distribution)

• Under averaged measure $\mathbb{E}Q_n$ path fluctuations of order $n^{2/3}$.

•
$$\frac{\log Z_{n,nx} - np(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom GUE distribution)

• Under averaged measure $\mathbb{E}Q_n$ path fluctuations of order $n^{2/3}$.

Known.

• Results for some exactly solvable models.

•
$$\frac{\log Z_{n,nx} - np(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom GUE distribution)

• Under averaged measure $\mathbb{E}Q_n$ path fluctuations of order $n^{2/3}$.

Known.

- Results for some exactly solvable models.
- "Weak universality" of Alberts-Khanin-Quastel.

•
$$\frac{\log Z_{n,nx} - np(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom GUE distribution)

• Under averaged measure $\mathbb{E}Q_n$ path fluctuations of order $n^{2/3}$.

Known.

- Results for some exactly solvable models.
- "Weak universality" of Alberts-Khanin-Quastel.
- Universality close to boundary of lattice.

Three exactly solvable 1+1 dim models

• Continuum directed random polymer

• **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation.

- **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer

- **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer, or continuous-time random walk paths in Brownian environment (O'Connell-Yor 2001).

- **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer, or continuous-time random walk paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2010).

- **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer, or continuous-time random walk paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2010).

Macdonald processes: a common algebraic framework (Borodin-Corwin).

- **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer, or continuous-time random walk paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2010).

Macdonald processes: a common algebraic framework (Borodin-Corwin).

For each of these, some degree of KPZ behavior has been verified.

- **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer, or continuous-time random walk paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2010).

Macdonald processes: a common algebraic framework (Borodin-Corwin).

For each of these, some degree of KPZ behavior has been verified.

Next brief look at KPZ, then focus on log-gamma.

1986 Kardar, Parisi and Zhang: general model for height function h(t,x) of a 1+1 dimensional interface:

$$h_t = \frac{1}{2} h_{xx} + \frac{1}{2} (h_x)^2 + \dot{W}$$

1986 Kardar, Parisi and Zhang: general model for height function h(t,x) of a 1+1 dimensional interface:

$$h_t = \frac{1}{2} h_{xx} + \frac{1}{2} (h_x)^2 + \dot{W}$$

Hopf-Cole solution: $h = \log Z$ where Z satisfies SHE:

$$Z_t = \frac{1}{2} Z_{xx} + Z \dot{W}$$

1986 Kardar, Parisi and Zhang: general model for height function h(t,x) of a 1+1 dimensional interface:

$$h_t = \frac{1}{2} h_{xx} + \frac{1}{2} (h_x)^2 + \dot{W}$$

Hopf-Cole solution: $h = \log Z$ where Z satisfies SHE:

$$Z_t = \frac{1}{2} Z_{xx} + Z \dot{W}$$

Results that established KPZ behavior:

1986 Kardar, Parisi and Zhang: general model for height function h(t,x) of a 1+1 dimensional interface:

$$h_t = \frac{1}{2} h_{xx} + \frac{1}{2} (h_x)^2 + \dot{W}$$

Hopf-Cole solution: $h = \log Z$ where Z satisfies SHE:

$$Z_t = \frac{1}{2} Z_{xx} + Z \dot{W}$$

Results that established KPZ behavior:

Var h(t, 0) ∼ t^{2/3} when h(0, x) = two-sided Brownian motion, stationary case. (Balázs-Quastel-S. 2011).

1986 Kardar, Parisi and Zhang: general model for height function h(t,x) of a 1+1 dimensional interface:

$$h_t = \frac{1}{2} h_{xx} + \frac{1}{2} (h_x)^2 + \dot{W}$$

Hopf-Cole solution: $h = \log Z$ where Z satisfies SHE:

$$Z_t = \frac{1}{2} Z_{xx} + Z \dot{W}$$

Results that established KPZ behavior:

- Var h(t, 0) ∼ t^{2/3} when h(0, x) = two-sided Brownian motion, stationary case. (Balázs-Quastel-S. 2011).
- Probability distribution for h(t, x), narrow wedge initial condition. (Amir-Corwin-Quastel and Sasamoto-Spohn 2011).

$$\label{eq:product} \begin{split} \mathsf{\Pi}_{m,n} &= \{ \text{ up-right lattice paths } x_{\centerdot}: (1,1) \to (m,n) \; \} \\ \text{Weights } Y_{i,j} &= e^{\omega(i,j)} \qquad \beta = 1 \end{split}$$

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\centerdot}: (1,1)
ightarrow (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ eta = 1

IID environment $\{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ $\beta = 1$ IID environment $\{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\star} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ $\beta = 1$ IID environment $\{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$

Fix $0 < \mu < \infty$, take $Y_{i,j}^{-1} \sim \text{Gamma}(\mu)$.

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ $\beta = 1$ IID environment $\{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$

Fix $0 < \mu < \infty$, take $Y_{i,i}^{-1} \sim \text{Gamma}(\mu)$.

Gamma density: $f(x) = \frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ $\beta = 1$ IID environment $\{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$

Fix
$$0 < \mu < \infty$$
, take $Y_{i,i}^{-1} \sim \text{Gamma}(\mu)$.

Gamma density: $f(x) = \frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

Results:

• Model and KPZ exponents (S 2010).

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ $\beta = 1$ IID environment $\{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$

Fix
$$0 < \mu < \infty$$
, take $Y_{i,j}^{-1} \sim \text{Gamma}(\mu)$.

Gamma density: $f(x) = \frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

Results:

- Model and KPZ exponents (S 2010).
- Large deviations (Georgiou-S 2011).

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ $\beta = 1$ IID environment $\{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$

Fix
$$0 < \mu < \infty$$
, take $Y_{i,j}^{-1} \sim \text{Gamma}(\mu)$.

Gamma density: $f(x) = \frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

Results:

- Model and KPZ exponents (S 2010).
- Large deviations (Georgiou-S 2011).
- Tropical combinatorics (Corwin-O'Connell-S-Zygouras 2011).

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ $\beta = 1$ IID environment $\{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$

Fix
$$0 < \mu < \infty$$
, take $Y_{i,j}^{-1} \sim \text{Gamma}(\mu)$.

Gamma density: $f(x) = \frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

Results:

- Model and KPZ exponents (S 2010).
- Large deviations (Georgiou-S 2011).
- Tropical combinatorics (Corwin-O'Connell-S-Zygouras 2011).
- Tracy-Widom limit (Borodin-Corwin-Remenik 2012).

Last passage percolation = zero-temperature polymer

Last passage percolation = zero-temperature polymer

For example, for pinned model:

$$Z_{n,u} = E\left[\exp\left\{\beta\sum_{k=1}^{n}\omega(k,X_k)\right\}, X_n = u\right]$$

$$Q_{n,u}(x_{\cdot}) = \frac{1}{Z_{n,u}} \exp\left\{\beta \sum_{k=1}^{n} \omega(k, x_k)\right\} \mathbf{1}\{x_n = u\} P(x_{\cdot})$$

Last passage percolation = zero-temperature polymer

For example, for pinned model:

$$Z_{n,u} = E\left[\exp\left\{\beta\sum_{k=1}^{n}\omega(k,X_k)\right\}, X_n = u\right]$$

$$Q_{n,u}(x_{\cdot}) = \frac{1}{Z_{n,u}} \exp\left\{\beta \sum_{k=1}^{n} \omega(k, x_k)\right\} \mathbf{1}\{x_n = u\} P(x_{\cdot})$$

Zero-temperature limit:

$$\lim_{\beta \to \infty} \beta^{-1} \log Z_{n,u} = \max_{x,:0 \to u} \sum_{k=1}^{n} \omega(k, x_k)$$

For example, for pinned model:

$$Z_{n,u} = E\left[\exp\left\{\beta\sum_{k=1}^{n}\omega(k,X_k)\right\}, X_n = u\right]$$

$$Q_{n,u}(x_{\cdot}) = \frac{1}{Z_{n,u}} \exp\left\{\beta \sum_{k=1}^{n} \omega(k, x_k)\right\} \mathbf{1}\{x_n = u\} P(x_{\cdot})$$

Zero-temperature limit:

$$\lim_{\beta \to \infty} \beta^{-1} \log Z_{n,u} = \max_{x,:0 \to u} \sum_{k=1}^{n} \omega(k, x_k)$$

As $\beta \to \infty$, polymer measure concentrates on maximizing path(s).

In log-gamma polymer, take $Y_{i,i}^{-1} \sim \text{Gamma}(\varepsilon \mu)$.

In log-gamma polymer, take $Y_{i,j}^{-1} \sim \text{Gamma}(\varepsilon \mu)$.

$$\varepsilon \log Z_{m,n} = \varepsilon \log \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_{k}}$$
$$= \varepsilon \log \sum_{x_{\cdot} \in \Pi_{m,n}} \exp \left\{ \varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_{k}} \right\}$$

In log-gamma polymer, take $Y_{i,j}^{-1} \sim \text{Gamma}(\varepsilon \mu)$.

$$\varepsilon \log Z_{m,n} = \varepsilon \log \sum_{\substack{x_{\star} \in \Pi_{m,n}}} \prod_{k=1}^{m+n} Y_{x_{k}}$$
$$= \varepsilon \log \sum_{\substack{x_{\star} \in \Pi_{m,n}}} \exp \left\{ \varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_{k}} \right\}$$

As $\varepsilon \searrow 0$:

In log-gamma polymer, take $Y_{i,j}^{-1} \sim \text{Gamma}(\varepsilon \mu)$.

$$\varepsilon \log Z_{m,n} = \varepsilon \log \sum_{x_{\star} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_{k}}$$
$$= \varepsilon \log \sum_{x_{\star} \in \Pi_{m,n}} \exp \left\{ \varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_{k}} \right\}$$

As $\varepsilon \searrow 0$: $\varepsilon \log Y \Rightarrow W \sim \mathsf{Exp}(\mu)$

In log-gamma polymer, take $Y_{i,j}^{-1} \sim \text{Gamma}(\varepsilon \mu)$.

$$\varepsilon \log Z_{m,n} = \varepsilon \log \sum_{x \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$$

$$= \varepsilon \log \sum_{\mathbf{x}_{\cdot} \in \Pi_{m,n}} \exp \left\{ \varepsilon^{-1} \sum_{k=1} \varepsilon \log Y_{\mathbf{x}_{k}} \right\}$$

As $\varepsilon \searrow 0$: $\varepsilon \log Y \Rightarrow W \sim \operatorname{Exp}(\mu)$ and $\varepsilon \log \sum e^{\varepsilon^{-1}a_i} \to \max a_i$

٦

In log-gamma polymer, take $Y_{i,j}^{-1} \sim \text{Gamma}(\varepsilon \mu)$.

$$\varepsilon \log Z_{m,n} = \varepsilon \log \sum_{x_{\star} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$$

$$= \varepsilon \log \sum_{x_{\cdot} \in \Pi_{m,n}} \exp \Big\{ \varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_k} \Big\}$$

As $\varepsilon \searrow 0$: $\varepsilon \log Y \Rightarrow W \sim \operatorname{Exp}(\mu)$ and $\varepsilon \log \sum e^{\varepsilon^{-1}a_i} \to \max a_i$

$$\varepsilon \log Z_{m,n} \Rightarrow \max_{x_{\cdot} \in \Pi_{m,n}} \sum_{k=1}^{m+n} W_{x_k}$$

In log-gamma polymer, take $Y_{i,j}^{-1} \sim \text{Gamma}(\varepsilon \mu)$.

$$\varepsilon \log Z_{m,n} = \varepsilon \log \sum_{x_{\star} \in \Pi_{m,n}} \prod_{k=1}^{m+n} Y_{x_k}$$

$$= \varepsilon \log \sum_{x_{\star} \in \Pi_{m,n}} \exp \left\{ \varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_{k}} \right\}$$

As $\varepsilon \searrow 0$: $\varepsilon \log Y \Rightarrow W \sim \operatorname{Exp}(\mu)$ and $\varepsilon \log \sum e^{\varepsilon^{-1}a_i} \to \max a_i$

$$\varepsilon \log Z_{m,n} \Rightarrow \max_{x_{\star} \in \Pi_{m,n}} \sum_{k=1}^{m+n} W_{x_k}$$

Limit is the corner growth model with Exp weights.

1. The process has a stationary version

1. The process has a stationary version

2. It can be "solved" with ideas from tropical combinatorics

1. The process has a stationary version

2. It can be "solved" with ideas from tropical combinatorics

Next a look at the stationarity and some consequences.

• Parameters $0 < \theta < \mu$.

• Parameters $0 < \theta < \mu$.

• Bulk weights $Y_{i,j}$ for $i, j \in \mathbb{N} = \{1, 2, 3, ...\}$ as before.

- Parameters $0 < \theta < \mu$.
- Bulk weights $Y_{i,j}$ for $i, j \in \mathbb{N} = \{1, 2, 3, ...\}$ as before.
- Boundary weights $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

• Parameters $0 < \theta < \mu$.

- Bulk weights $Y_{i,j}$ for $i, j \in \mathbb{N} = \{1, 2, 3, ...\}$ as before.
- Boundary weights $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

• Parameters $0 < \theta < \mu$.

• Bulk weights $Y_{i,j}$ for $i,j \in \mathbb{N} = \{1,2,3,\dots\}$ as before.

• Boundary weights $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

• Parameters $0 < \theta < \mu$.

• Bulk weights $Y_{i,j}$ for $i,j \in \mathbb{N} = \{1,2,3,\dots\}$ as before.

• Boundary weights $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

• $Z_{m,n}^{\theta} =$ partition function for paths $x_{\bullet} : (0,0) \rightarrow (m,n)$

In (μ, θ) -model, compute partition functions $Z_{m,n}^{\theta} \forall (m, n) \in \mathbb{Z}_{+}^{2}$.

$$U_{\{x-e_1,x\}} = \frac{Z_x^{\theta}}{Z_{x-e_1}^{\theta}} \qquad \text{(horizontal)}$$
$$V_{\{x-e_2,x\}} = \frac{Z_x^{\theta}}{Z_{x-e_2}^{\theta}} \qquad \text{(vertical)}$$

$$U_{\{x-e_1,x\}} = \frac{Z_x^{\theta}}{Z_{x-e_1}^{\theta}} \qquad \text{(horizontal)}$$
$$V_{\{x-e_2,x\}} = \frac{Z_x^{\theta}}{Z_{x-e_2}^{\theta}} \qquad \text{(vertical)}$$

$$U_{\{x-e_1,x\}} = \frac{Z_x^{\theta}}{Z_{x-e_1}^{\theta}} \qquad \text{(horizontal)}$$
$$V_{\{x-e_2,x\}} = \frac{Z_x^{\theta}}{Z_{x-e_2}^{\theta}} \qquad \text{(vertical)}$$

$$U_{\{x-e_{1},x\}} = \frac{Z_{x}^{\theta}}{Z_{x-e_{1}}^{\theta}} \qquad \text{(horizontal}$$
$$V_{\{x-e_{2},x\}} = \frac{Z_{x}^{\theta}}{Z_{x-e_{2}}^{\theta}} \qquad \text{(vertical)}$$

$$U_{\{x-e_{1},x\}} = \frac{Z_{x}^{\theta}}{Z_{x-e_{1}}^{\theta}} \qquad \text{(horizontal}$$
$$V_{\{x-e_{2},x\}} = \frac{Z_{x}^{\theta}}{Z_{x-e_{2}}^{\theta}} \qquad \text{(vertical)}$$

$$U_{\{x-e_{1},x\}} = \frac{Z_{x}^{\theta}}{Z_{x-e_{1}}^{\theta}} \qquad \text{(horizontal}$$
$$V_{\{x-e_{2},x\}} = \frac{Z_{x}^{\theta}}{Z_{x-e_{2}}^{\theta}} \qquad \text{(vertical)}$$

$$U_{f_k} \sim \operatorname{Gamma}^{-1}(heta) \qquad V_{f_\ell} \sim \operatorname{Gamma}^{-1}(\mu - heta)$$

$$U_{f_k} \sim \operatorname{Gamma}^{-1}(heta) \qquad V_{f_\ell} \sim \operatorname{Gamma}^{-1}(\mu - heta)$$

No other weight distribution satisfies this.

$$U_{f_k} \sim \operatorname{\mathsf{Gamma}}^{-1}(heta) \qquad V_{f_\ell} \sim \operatorname{\mathsf{Gamma}}^{-1}(\mu - heta)$$

No other weight distribution satisfies this.

 \exists analogous property for Exp corner growth model that is a generalization of Burke's Theorem (Output Theorem) for M/M/1 queues.

$$U_{f_k} \sim \operatorname{\mathsf{Gamma}}^{-1}(heta) \qquad V_{f_\ell} \sim \operatorname{\mathsf{Gamma}}^{-1}(\mu - heta)$$

No other weight distribution satisfies this.

 \exists analogous property for Exp corner growth model that is a generalization of Burke's Theorem (Output Theorem) for M/M/1 queues.

We could call this the **Burke property** of the log-gamma polymer.

$$\begin{array}{c|c} & \text{Initial weights } (i,j\in\mathbb{N}):\\ & & \\ & & \\ \bullet & &$$

Coupling of two log-gamma models:

- Original one with IID bulk weights, paths $(1,1) \rightarrow (m,n)$
- Stationary one, paths $(0,0) \rightarrow (m,n)$

$$\begin{array}{c|c} & \text{Initial weights } (i,j\in\mathbb{N}):\\ & & \\ & & \\ \bullet & &$$

Coupling of two log-gamma models:

- Original one with IID bulk weights, paths $(1,1) \rightarrow (m,n)$
- Stationary one, paths $(0,0) \rightarrow (m,n)$

Strategy: (i) derive a result for the stationary process (ii) use coupling to pass results to the original IID model

$$\begin{array}{c|c} & \text{Initial weights } (i,j\in\mathbb{N}):\\ & & \\ & & \\ \bullet & &$$

Coupling of two log-gamma models:

- Original one with IID bulk weights, paths $(1,1) \rightarrow (m,n)$
- Stationary one, paths $(0,0) \rightarrow (m,n)$

Strategy: (i) derive a result for the stationary process (ii) use coupling to pass results to the original IID model

Let us look at fluctuation exponents for $\log Z$.

Exit point of path from x-axis $\xi_x = \max\{k \ge 0 : x_i = (i, 0) \text{ for } 0 \le i \le k\}$

Exit point of path from x-axis $\xi_x = \max\{k \ge 0 : x_i = (i, 0) \text{ for } 0 \le i \le k\}$

For $\theta, x > 0$ define positive function

$$L(\theta, x) = \int_0^x (\Psi_0(\theta) - \log y) x^{-\theta} y^{\theta-1} e^{x-y} \, dy$$

Exit point of path from x-axis $\xi_x = \max\{k \ge 0 : x_i = (i, 0) \text{ for } 0 \le i \le k\}$

For $\theta, x > 0$ define positive function

$$L(\theta, x) = \int_0^x (\Psi_0(\theta) - \log y) x^{-\theta} y^{\theta-1} e^{x-y} dy$$

Theorem. For the stationary case,

$$\operatorname{Var}\left[\log Z_{m,n}^{\theta}\right] = n\Psi_1(\mu - \theta) - m\Psi_1(\theta) + 2 E_{m,n}\left[\sum_{i=1}^{\xi_x} L(\theta, Y_{i,0}^{-1})\right]$$

Remark: polygamma functions

113/1

$$\Psi_n(s) = rac{d^{n+1}}{ds^{n+1}} \log \Gamma(s), \qquad n \ge 0$$

These appear naturally because for $Y^{-1} \sim \text{Gamma}(\mu)$

$$\mathbb{E}(\log Y) = -\Psi_0(\mu) \qquad \text{(digamma function)}$$

$$\operatorname{Var}(\log Y) = \Psi_1(\mu)$$
 (trigamma function)

With $0 < \theta < \mu$ fixed and $N \nearrow \infty$ assume

$$|m - N\Psi_1(\mu - heta)| \leq CN^{2/3}$$
 and $|n - N\Psi_1(heta)| \leq CN^{2/3}$ (1)

With $0 < \theta < \mu$ fixed and $N \nearrow \infty$ assume

$$|m - N\Psi_1(\mu - heta)| \leq CN^{2/3}$$
 and $|n - N\Psi_1(heta)| \leq CN^{2/3}$ (1)

Theorem: Variance bounds in characteristic direction For (m, n) as in (1), $C_1 N^{2/3} \leq \operatorname{Var}(\log Z_{m,n}^{\theta}) \leq C_2 N^{2/3}$.

With $0 < \theta < \mu$ fixed and $N \nearrow \infty$ assume

$$|m - N\Psi_1(\mu - \theta)| \le CN^{2/3}$$
 and $|n - N\Psi_1(\theta)| \le CN^{2/3}$ (1)

Theorem: Variance bounds in characteristic direction

For
$$(m, n)$$
 as in (1), $C_1 N^{2/3} \leq \mathbb{V}ar(\log Z_{m,n}^{\theta}) \leq C_2 N^{2/3}$

Theorem: Off-characteristic CLT

Suppose $n = \Psi_1(\theta)N$ and $m = \Psi_1(\mu - \theta)N + \gamma N^{\alpha}$ with $\gamma > 0$, $\alpha > 2/3$. Then

$$\mathcal{N}^{-lpha/2}\Big\{\log Z^{ heta}_{m,n} - \mathbb{E}ig(\log Z^{ heta}_{m,n}ig)\Big\} \ \Rightarrow \ \mathcal{N}ig(0,\gamma\Psi_1(heta)ig)$$

$$p_{s,t}(\mu) \equiv \lim_{N \to \infty} \frac{\log Z_{Ns,Nt}}{N} = \inf_{\theta \in (0,\mu)} \{-s \Psi_0(\theta) - t \Psi_0(\mu - \theta)\}$$

$$p_{s,t}(\mu) \equiv \lim_{N \to \infty} \frac{\log Z_{Ns,Nt}}{N} = \inf_{\theta \in (0,\mu)} \{-s \Psi_0(\theta) - t \Psi_0(\mu - \theta)\}$$

Theorem. For $1 \le p < 3/2$:

$$C_1 N^{p/3} \leq \mathbb{E} \big[|\log Z_{Ns,Nt} - Np_{s,t}(\mu)|^p \big] \leq C_2 N^{p/3}$$

$$p_{s,t}(\mu) \equiv \lim_{N \to \infty} \frac{\log Z_{Ns,Nt}}{N} = \inf_{\theta \in (0,\mu)} \{-s \Psi_0(\theta) - t \Psi_0(\mu - \theta)\}$$

Theorem. For $1 \le p < 3/2$:

$$C_1 N^{p/3} \leq \mathbb{E} \left[|\log Z_{Ns,Nt} - Np_{s,t}(\mu)|^p \right] \leq C_2 N^{p/3}$$

Proof idea. Couple to a stationary process with $\theta \in (0, \mu)$ chosen by

$$s\Psi_1(\theta) - t\Psi_1(\mu - \theta) = 0$$

$$p_{s,t}(\mu) \equiv \lim_{N \to \infty} \frac{\log Z_{Ns,Nt}}{N} = \inf_{\theta \in (0,\mu)} \{-s \Psi_0(\theta) - t \Psi_0(\mu - \theta)\}$$

Theorem. For $1 \le p < 3/2$:

$$C_1 N^{p/3} \leq \mathbb{E} \big[|\log Z_{Ns,Nt} - Np_{s,t}(\mu)|^p \big] \leq C_2 N^{p/3}$$

Proof idea. Couple to a stationary process with $\theta \in (0, \mu)$ chosen by

$$s\Psi_1(\theta) - t\Psi_1(\mu - \theta) = 0$$

Remark. Similar bounds exist for path with KPZ exponent 2/3.

Explicit large deviations for $\log Z$

L.m.g.f. of log Y, $Y \sim \Gamma^{-1}(\mu)$:

$$M_{\mu}(\xi) = \log \mathbb{E}(e^{\xi \log Y}) = \begin{cases} \log \Gamma(\mu - \xi) - \log \Gamma(\mu) & \xi \in (-\infty, \mu) \\ \infty & \xi \in [\mu, \infty). \end{cases}$$

Explicit large deviations for $\log Z$

L.m.g.f. of log Y, $Y \sim \Gamma^{-1}(\mu)$:

$$M_{\mu}(\xi) = \log \mathbb{E}(e^{\xi \log Y}) = \begin{cases} \log \Gamma(\mu - \xi) - \log \Gamma(\mu) & \xi \in (-\infty, \mu) \\ \infty & \xi \in [\mu, \infty). \end{cases}$$

For i.i.d. $\Gamma^{-1}(\mu)$ model, let

$$\Lambda_{s,t}(\xi) = \lim_{n \to \infty} n^{-1} \log \mathbb{E}(e^{\xi \log Z_{ns,nt}}), \qquad \xi \in \mathbb{R}$$

Explicit large deviations for $\log Z$

L.m.g.f. of log Y, $Y \sim \Gamma^{-1}(\mu)$:

$$M_{\mu}(\xi) = \log \mathbb{E}(e^{\xi \log Y}) = \begin{cases} \log \Gamma(\mu - \xi) - \log \Gamma(\mu) & \xi \in (-\infty, \mu) \\ \infty & \xi \in [\mu, \infty). \end{cases}$$

For i.i.d. $\Gamma^{-1}(\mu)$ model, let

$$\Lambda_{s,t}(\xi) = \lim_{n \to \infty} n^{-1} \log \mathbb{E}(e^{\xi \log Z_{ns,nt}}), \qquad \xi \in \mathbb{R}$$

Theorem. [Georgiou, S 2011]

$$egin{aligned} \Lambda_{s,t}(\xi) &= egin{cases} p(s,t)\xi & \xi < 0 \ &\inf_{ heta \in (\xi,\mu)} ig\{ t M_ heta(\xi) - s M_{\mu- heta}(-\xi) ig\} & 0 \leq \xi < \mu \ &\infty & \xi \geq \mu. \end{aligned}$$

• $\Lambda_{s,t}$ linear on \mathbb{R}_{-} because for r < p(s,t)

$$\lim_{n\to\infty} n^{-1}\log \mathbb{P}\{\log Z_{ns,nt} \leq nr\} = -\infty.$$

• $\Lambda_{s,t}$ linear on \mathbb{R}_{-} because for r < p(s,t) $\lim_{n \to \infty} n^{-1} \log \mathbb{P}\{\log Z_{ns,nt} \le nr\} = -\infty.$

• Right tail LDP: for $r \ge p(s, t)$

$$J_{s,t}(r) \equiv -\lim_{n \to \infty} n^{-1} \log \mathbb{P}\{\log Z_{ns,nt} \ge nr\} = \Lambda_{s,t}^*(r)$$

• $\Lambda_{s,t}$ linear on \mathbb{R}_{-} because for r < p(s,t) $\lim_{n \to \infty} n^{-1} \log \mathbb{P}\{\log Z_{ns,nt} \le nr\} = -\infty.$

• Right tail LDP: for $r \ge p(s, t)$

$$J_{s,t}(r) \equiv -\lim_{n \to \infty} n^{-1} \log \mathbb{P}\{\log Z_{ns,nt} \ge nr\} = \Lambda_{s,t}^*(r)$$

• Proof of formula for $\Lambda_{s,t}$ goes by first finding $J_{s,t}$ and then convex conjugation.

Starting point for proof of large deviations

Starting point for proof of large deviations

Divide by $\prod_{j=1}^{nt} V_{0,j}$:

$$\prod_{i=1}^{ns} U_{i,nt} = \sum_{\ell=1}^{nt} \left(\prod_{j=\ell+1}^{nt} V_{0,j}^{-1} \right) Z_{(1,\ell),(ns,nt)} + \sum_{k=1}^{ns} \left(\prod_{j=1}^{nt} V_{0,j}^{-1} \right) \left(\prod_{i=1}^{k} U_{i,0} \right) Z_{(k,1),(ns,nt)}$$

Starting point for proof of large deviations

Divide by $\prod_{j=1}^{nt} V_{0,j}$:

$$\prod_{i=1}^{ns} U_{i,nt} = \sum_{\ell=1}^{nt} \left(\prod_{j=\ell+1}^{nt} V_{0,j}^{-1} \right) Z_{(1,\ell),(ns,nt)} + \sum_{k=1}^{ns} \left(\prod_{j=1}^{nt} V_{0,j}^{-1} \right) \left(\prod_{i=1}^{k} U_{i,0} \right) Z_{(k,1),(ns,nt)}$$

Now we know LDP for log(l.h.s) and can extract log Z from the r.h.s.

Work in progress: intermediate disorder exponents

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim \text{order of fluctuations of } \log Z_n$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim \text{order of fluctuations of } \log Z_n$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

KPZ:
$$\chi = 1/3$$
 $\zeta = 2/3$ $(\beta > 0)$

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

Intermediate disorder regime: take $\beta = \beta_0 n^{-\alpha}$.

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

Intermediate disorder regime: take $\beta = \beta_0 n^{-\alpha}$.

Interesting window $\alpha \in [0, 1/4]$.

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

Intermediate disorder regime: take $\beta = \beta_0 n^{-\alpha}$.

Interesting window $\alpha \in [0, 1/4]$.

 $\alpha = 0$ KPZ universality $\alpha = 1/4$ diffusive regime.

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

Intermediate disorder regime: take $\beta = \beta_0 n^{-\alpha}$.

Interesting window $\alpha \in [0, 1/4]$.

 $\alpha = 0$ KPZ universality $\alpha = 1/4$ diffusive regime.

Alberts-Khanin-Quastel conj: $\chi(\alpha) = \frac{1}{3}(1-4\alpha)$ $\zeta(\alpha) = \frac{2}{3}(1-\alpha)$.

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

Intermediate disorder regime: take $\beta = \beta_0 n^{-\alpha}$.

Interesting window $\alpha \in [0, 1/4]$.

 $\alpha = 0$ KPZ universality $\alpha = 1/4$ diffusive regime.

Alberts-Khanin-Quastel conj: $\chi(\alpha) = \frac{1}{3}(1-4\alpha)$ $\zeta(\alpha) = \frac{2}{3}(1-\alpha)$.

Theorem. These exponents valid for stationary semidiscrete polymer. Upper bounds valid for model without boundaries. [Moreno, S, Valkó]

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Partition function:

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + \right)\right]$$

+
$$B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \Big] ds_{1,n-1}$$

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Partition function:

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + \right)\right]$$

+
$$B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \Big] ds_{1,n-1}$$

Results:

• Model by O'Connell-Yor (2001).

•

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Partition function:

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + \right)\right]$$

+
$$B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \Big] ds_{1,n-1}$$

Results:

- Model by O'Connell-Yor (2001).
- KPZ exponents by Valkó-S (2010).

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Partition function:

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + \right)\right]$$

+
$$B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \Big] ds_{1,n-1}$$

Results:

- Model by O'Connell-Yor (2001).
- KPZ exponents by Valkó-S (2010).
- Link to quantum Toda lattice via tropical combinatorics by O'Connell (2010).

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Partition function:

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + \right)\right]$$

+
$$B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \Big] ds_{1,n-1}$$

Results:

- Model by O'Connell-Yor (2001).
- KPZ exponents by Valkó-S (2010).
- Link to quantum Toda lattice via tropical combinatorics by O'Connell (2010).
- Tracy-Widom limit by Borodin-Corwin (2011), +Ferrari.