Exactly solvable directed polymers in the KPZ universality class

Timo Seppäläinen

Department of Mathematics
University of Wisconsin-Madison

2012

Outline

1. KPZ vs EW universality in $1+1$ dimensional models

2. Three exactly solvable models in KPZ class: KPZ equation, semi-discrete polymer, log-gamma polymer
3. Specific results for the log-gamma polymer: stationary process, fluctuation exponents, large deviations

Next talk by N. Zygouras: log-gamma polymer and tropical combinatorics.

Collaborators: Márton Balázs (Budapest), Firas Rassoul-Agha (Utah), Jeremy Quastel (Toronto), Nicos Georgiou (Utah), Ivan Corwin (Microsoft/MIT), Neil O'Connell (Warwick), Nikos Zygouras (Warwick), Michael Damron (Indiana)

KPZ and EW universality for $1+1$ dim interface and polymer models

Characterized by fluctuation exponents and limit distributions.

KPZ and EW universality for $1+1$ dim interface and polymer models

Characterized by fluctuation exponents and limit distributions.

Kardar-Parisi-Zhang (KPZ)

- time $\sim n$, spatial correlations $\sim n^{2 / 3}$, fluctuations $\sim n^{1 / 3}$
- limits related to Tracy-Widom distributions

KPZ and EW universality for $1+1$ dim interface and polymer models

Characterized by fluctuation exponents and limit distributions.

Kardar-Parisi-Zhang (KPZ)

- time $\sim n$, spatial correlations $\sim n^{2 / 3}$, fluctuations $\sim n^{1 / 3}$
- limits related to Tracy-Widom distributions

Edwards-Wilkinson (EW)

- time $\sim n$, spatial correlations $\sim n^{1 / 2}$, fluctuations $\sim n^{1 / 4}$
- Gaussian limits

In KPZ class we find $1+1$ dimensional

In KPZ class we find $1+1$ dimensional

- growth models such as last-passage percolation, PNG, ballistic deposition

In KPZ class we find $1+1$ dimensional

- growth models such as last-passage percolation, PNG, ballistic deposition
- particle systems with drift and nonlinear flux function (ASEP, AZRP)

In KPZ class we find $1+1$ dimensional

- growth models such as last-passage percolation, PNG, ballistic deposition
- particle systems with drift and nonlinear flux function (ASEP, AZRP)
- directed polymers

In KPZ class we find $1+1$ dimensional

- growth models such as last-passage percolation, PNG, ballistic deposition
- particle systems with drift and nonlinear flux function (ASEP, AZRP)
- directed polymers

This talk will focus on polymers in KPZ class.

In KPZ class we find $1+1$ dimensional

- growth models such as last-passage percolation, PNG, ballistic deposition
- particle systems with drift and nonlinear flux function (ASEP, AZRP)
- directed polymers

This talk will focus on polymers in KPZ class.

First a brief look at EW class through an example.

Example from EW class: Random average process (RAP)

Example from EW class: Random average process (RAP)

state of the system is a function $\sigma: \mathbb{Z} \rightarrow \mathbb{R}$

Example from EW class: Random average process (RAP)

state of the system is a function $\sigma: \mathbb{Z} \rightarrow \mathbb{R}$

Discrete-time evolution:

$$
\sigma_{t}(k)=\sum_{j} \omega_{t, k}(j) \sigma_{t-1}(k+j)
$$

Example from EW class: Random average process (RAP)

state of the system is
a function $\sigma: \mathbb{Z} \rightarrow \mathbb{R}$

Discrete-time evolution:

$$
\sigma_{t}(k)=\sum_{j} \omega_{t, k}(j) \sigma_{t-1}(k+j)
$$

$\omega_{t, k}=\left(\omega_{t, k}(j):|j| \leq R\right)$ random probability vectors, IID over (t, k)

Example from EW class: Random average process (RAP)

state of the system is
a function $\sigma: \mathbb{Z} \rightarrow \mathbb{R}$

Discrete-time evolution:

$$
\sigma_{t}(k)=\sum_{j} \omega_{t, k}(j) \sigma_{t-1}(k+j)
$$

$\omega_{t, k}=\left(\omega_{t, k}(j):|j| \leq R\right)$ random probability vectors, IID over (t, k)

Model introduced by Ferrari-Fontes EJP 1998.

RAP scaling limit

RAP scaling limit

$$
v=\sum_{x} x \mathbb{E} \omega(x) \quad \sigma^{2}=\sum_{x}(x-v)^{2} \mathbb{E} \omega(x)
$$

RAP scaling limit

$$
v=\sum_{x} x \mathbb{E} \omega(x) \quad \sigma^{2}=\sum_{x}(x-v)^{2} \mathbb{E} \omega(x) .
$$

Initially $\sigma_{0}(0)=0$, IID increments $\left\{\sigma_{0}(i)-\sigma_{0}(i-1)\right\}$ with mean μ_{0}.

RAP scaling limit

$$
v=\sum_{x} x \mathbb{E} \omega(x) \quad \sigma^{2}=\sum_{x}(x-v)^{2} \mathbb{E} \omega(x) .
$$

Initially $\sigma_{0}(0)=0$, IID increments $\left\{\sigma_{0}(i)-\sigma_{0}(i-1)\right\}$ with mean μ_{0}.
Scaled height process

$$
z_{n}(t, r)=n^{-1 / 4}\left\{\sigma_{\lfloor n t\rfloor}(-\lfloor n t v\rfloor+\lfloor r \sqrt{n}\rfloor)-\mu_{0} r \sqrt{n}\right\}, \quad(t, r) \in \mathbb{R}_{+} \times \mathbb{R} .
$$

RAP scaling limit

$$
v=\sum_{x} x \mathbb{E} \omega(x) \quad \sigma^{2}=\sum_{x}(x-v)^{2} \mathbb{E} \omega(x) .
$$

Initially $\sigma_{0}(0)=0$, IID increments $\left\{\sigma_{0}(i)-\sigma_{0}(i-1)\right\}$ with mean μ_{0}.
Scaled height process

$$
z_{n}(t, r)=n^{-1 / 4}\left\{\sigma_{\lfloor n t\rfloor}(-\lfloor n t v\rfloor+\lfloor r \sqrt{n}\rfloor)-\mu_{0} r \sqrt{n}\right\}, \quad(t, r) \in \mathbb{R}_{+} \times \mathbb{R} .
$$

Theorem. [Balázs, Rassoul-Agha, S. 2006] $\quad z_{n}(t, r) \Rightarrow Z(t, r)$ where Z is the Gaussian process

$$
Z(t, r)=c_{1} \iint_{[0, t] \times \mathbb{R}} p_{\sigma^{2}(t-s)}(r-x) d W(s, x)+c_{2} \int_{\mathbb{R}} p_{\sigma^{2} t}(r-x) B(x) d x
$$

Edwards-Wilkinson (EW) universality

RAP is an example from the EW universality class.

Edwards-Wilkinson (EW) universality

RAP is an example from the EW universality class.

In this class also

- current of independent random walks (incl. RWRE)
- symmetric simple exclusion process
- Hammersley's serial harness process

KPZ class: $1+1$ dim directed polymer

KPZ class: $1+1$ dim directed polymer

$$
\{\omega(k, x)\} \text { i.i.d. environment under } \mathbb{P}
$$

KPZ class: $1+1$ dim directed polymer

$\{\omega(k, x)\}$ i.i.d. environment under \mathbb{P}

$$
Q_{n}\left(x_{.}\right)=\frac{1}{Z_{n}} \exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, x_{k}\right)\right\} P\left(x_{.}\right)
$$

KPZ class: $1+1$ dim directed polymer

$\{\omega(k, x)\}$ i.i.d. environment under \mathbb{P}

$$
\begin{aligned}
& Q_{n}\left(x_{.}\right)=\frac{1}{Z_{n}} \exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, x_{k}\right)\right\} P\left(x_{.}\right) \\
& Z_{n}=E\left[\exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, X_{k}\right)\right\}\right]
\end{aligned}
$$

KPZ class: $1+1$ dim directed polymer

$\{\omega(k, x)\}$ i.i.d. environment under \mathbb{P}

$$
\begin{aligned}
& Q_{n}(x .)=\frac{1}{Z_{n}} \exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, x_{k}\right)\right\} P(x .) \\
& Z_{n}=E\left[\exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, X_{k}\right)\right\}\right] \\
& Z_{n, u}=E\left[\exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, X_{k}\right)\right\}, X_{n}=u\right]
\end{aligned}
$$

KPZ class: $1+1$ dim directed polymer

$\{\omega(k, x)\}$ i.i.d. environment under \mathbb{P}

$$
\begin{aligned}
& Q_{n}(x .)=\frac{1}{Z_{n}} \exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, x_{k}\right)\right\} P(x .) \\
& Z_{n}=E\left[\exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, X_{k}\right)\right\}\right] \\
& Z_{n, u}=E\left[\exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, X_{k}\right)\right\}, X_{n}=u\right]
\end{aligned}
$$

Model: Huse and Henley 1985

Expected KPZ behavior

Conjectures. Under a moment assumption on weights:

Expected KPZ behavior

Conjectures. Under a moment assumption on weights:

- $\frac{\log Z_{n, n x}-n p(x)}{c n^{1 / 3}} \xrightarrow{d} F_{\text {GUE }}$ (Tracy-Widom GUE distribution)

Expected KPZ behavior

Conjectures. Under a moment assumption on weights:

- $\frac{\log Z_{n, n x}-n p(x)}{c n^{1 / 3}} \xrightarrow{d} F_{\text {GUE }}$ (Tracy-Widom GUE distribution)
- Under averaged measure $\mathbb{E} Q_{n}$ path fluctuations of order $n^{2 / 3}$.

Expected KPZ behavior

Conjectures. Under a moment assumption on weights:

- $\frac{\log Z_{n, n x}-n p(x)}{c n^{1 / 3}} \xrightarrow{d} F_{\text {GUE }}$ (Tracy-Widom GUE distribution)
- Under averaged measure $\mathbb{E} Q_{n}$ path fluctuations of order $n^{2 / 3}$.

Known.

- Results for some exactly solvable models.

Expected KPZ behavior

Conjectures. Under a moment assumption on weights:

- $\frac{\log Z_{n, n x}-n p(x)}{c n^{1 / 3}} \xrightarrow{d} F_{\text {GUE }}$ (Tracy-Widom GUE distribution)
- Under averaged measure $\mathbb{E} Q_{n}$ path fluctuations of order $n^{2 / 3}$.

Known.

- Results for some exactly solvable models.
- "Weak universality" of Alberts-Khanin-Quastel.

Expected KPZ behavior

Conjectures. Under a moment assumption on weights:

- $\frac{\log Z_{n, n x}-n p(x)}{c n^{1 / 3}} \xrightarrow{d} F_{\text {GUE }}$ (Tracy-Widom GUE distribution)
- Under averaged measure $\mathbb{E} Q_{n}$ path fluctuations of order $n^{2 / 3}$.

Known.

- Results for some exactly solvable models.
- "Weak universality" of Alberts-Khanin-Quastel.
- Universality close to boundary of lattice.

Three exactly solvable $1+1 \mathrm{dim}$ models

Three exactly solvable $1+1$ dim models

- Continuum directed random polymer

Three exactly solvable $1+1$ dim models

- Continuum directed random polymer, or Hopf-Cole solution of the KPZ equation.

Three exactly solvable $1+1$ dim models

- Continuum directed random polymer, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer

Three exactly solvable $1+1$ dim models

- Continuum directed random polymer, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer, or continuous-time random walk paths in Brownian environment (O'Connell-Yor 2001).

Three exactly solvable $1+1$ dim models

- Continuum directed random polymer, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer, or continuous-time random walk paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2010).

Three exactly solvable $1+1$ dim models

- Continuum directed random polymer, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer, or continuous-time random walk paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2010).

Macdonald processes: a common algebraic framework (Borodin-Corwin).

Three exactly solvable $1+1$ dim models

- Continuum directed random polymer, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer, or continuous-time random walk paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2010).

Macdonald processes: a common algebraic framework (Borodin-Corwin).
For each of these, some degree of KPZ behavior has been verified.

Three exactly solvable $1+1$ dim models

- Continuum directed random polymer, or Hopf-Cole solution of the KPZ equation.
- Semidiscrete polymer, or continuous-time random walk paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2010).

Macdonald processes: a common algebraic framework (Borodin-Corwin).
For each of these, some degree of KPZ behavior has been verified.
Next brief look at KPZ, then focus on log-gamma.

KPZ equation

1986 Kardar, Parisi and Zhang: general model for height function $h(t, x)$ of a $1+1$ dimensional interface:

$$
h_{t}=\frac{1}{2} h_{x x}+\frac{1}{2}\left(h_{x}\right)^{2}+\dot{W}
$$

KPZ equation

1986 Kardar, Parisi and Zhang: general model for height function $h(t, x)$ of a $1+1$ dimensional interface:

$$
h_{t}=\frac{1}{2} h_{x x}+\frac{1}{2}\left(h_{x}\right)^{2}+\dot{W}
$$

Hopf-Cole solution: $h=\log Z$ where Z satisfies SHE:

$$
Z_{t}=\frac{1}{2} Z_{x x}+Z \dot{W}
$$

KPZ equation

1986 Kardar, Parisi and Zhang: general model for height function $h(t, x)$ of a $1+1$ dimensional interface:

$$
h_{t}=\frac{1}{2} h_{x x}+\frac{1}{2}\left(h_{x}\right)^{2}+\dot{W}
$$

Hopf-Cole solution: $h=\log Z$ where Z satisfies SHE:

$$
Z_{t}=\frac{1}{2} Z_{x x}+Z \dot{W}
$$

Results that established KPZ behavior:

KPZ equation

1986 Kardar, Parisi and Zhang: general model for height function $h(t, x)$ of a $1+1$ dimensional interface:

$$
h_{t}=\frac{1}{2} h_{x x}+\frac{1}{2}\left(h_{x}\right)^{2}+\dot{W}
$$

Hopf-Cole solution: $h=\log Z$ where Z satisfies SHE:

$$
Z_{t}=\frac{1}{2} Z_{x x}+Z \dot{W}
$$

Results that established KPZ behavior:

- Var $h(t, 0) \sim t^{2 / 3}$ when $h(0, x)=$ two-sided Brownian motion, stationary case. (Balázs-Quastel-S. 2011).

KPZ equation

1986 Kardar, Parisi and Zhang: general model for height function $h(t, x)$ of a $1+1$ dimensional interface:

$$
h_{t}=\frac{1}{2} h_{x x}+\frac{1}{2}\left(h_{x}\right)^{2}+\dot{W}
$$

Hopf-Cole solution: $h=\log Z$ where Z satisfies SHE:

$$
Z_{t}=\frac{1}{2} Z_{x x}+Z \dot{W}
$$

Results that established KPZ behavior:

- $\operatorname{Var} h(t, 0) \sim t^{2 / 3}$ when $h(0, x)=$ two-sided Brownian motion, stationary case. (Balázs-Quastel-S. 2011).
- Probability distribution for $h(t, x)$, narrow wedge initial condition. (Amir-Corwin-Quastel and Sasamoto-Spohn 2011).

Log-gamma polymer

Log-gamma polymer

$$
\Pi_{m, n}=\{\text { up-right lattice paths } x .:(1,1) \rightarrow(m, n)\}
$$

Log-gamma polymer

$\Pi_{m, n}=\left\{\right.$ up-right lattice paths $\left.x_{.}:(1,1) \rightarrow(m, n)\right\}$

Weights $Y_{i, j}=e^{\omega(i, j)} \quad \beta=1$

Log-gamma polymer

$\Pi_{m, n}=\{$ up-right lattice paths $\times .:(1,1) \rightarrow(m, n)\}$

Weights $Y_{i, j}=e^{\omega(i, j)} \quad \beta=1$
IID environment $\left\{Y_{i, j}:(i, j) \in \mathbb{N}^{2}\right\}$

Log-gamma polymer

$\Pi_{m, n}=\{$ up-right lattice paths $\times .:(1,1) \rightarrow(m, n)\}$

Weights $Y_{i, j}=e^{\omega(i, j)} \quad \beta=1$
IID environment $\left\{Y_{i, j}:(i, j) \in \mathbb{N}^{2}\right\}$
Partition function: $\quad Z_{m, n}=\sum_{x_{.} \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}}$

Log-gamma polymer

$\Pi_{m, n}=\{$ up-right lattice paths $\times .:(1,1) \rightarrow(m, n)\}$

Weights $Y_{i, j}=e^{\omega(i, j)} \quad \beta=1$
IID environment $\left\{Y_{i, j}:(i, j) \in \mathbb{N}^{2}\right\}$
Partition function: $\quad Z_{m, n}=\sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}}$
Fix $0<\mu<\infty$, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)$.

Log-gamma polymer

$\Pi_{m, n}=\{$ up-right lattice paths $x .:(1,1) \rightarrow(m, n)\}$

Weights $Y_{i, j}=e^{\omega(i, j)} \quad \beta=1$
IID environment $\left\{Y_{i, j}:(i, j) \in \mathbb{N}^{2}\right\}$
Partition function: $\quad Z_{m, n}=\sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}}$
Fix $0<\mu<\infty$, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)$. Gamma density: $f(x)=\frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

Log-gamma polymer

$$
\Pi_{m, n}=\{\text { up-right lattice paths } x .:(1,1) \rightarrow(m, n)\}
$$

Weights $Y_{i, j}=e^{\omega(i, j)} \quad \beta=1$
IID environment $\left\{Y_{i, j}:(i, j) \in \mathbb{N}^{2}\right\}$
Partition function: $\quad Z_{m, n}=\sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}}$
Fix $0<\mu<\infty$, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)$. Gamma density: $f(x)=\frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

Results:

- Model and KPZ exponents (S 2010).

Log-gamma polymer

$$
\Pi_{m, n}=\{\text { up-right lattice paths } x .:(1,1) \rightarrow(m, n)\}
$$

Weights $Y_{i, j}=e^{\omega(i, j)} \quad \beta=1$
IID environment $\left\{Y_{i, j}:(i, j) \in \mathbb{N}^{2}\right\}$
Partition function: $\quad Z_{m, n}=\sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}}$
Fix $0<\mu<\infty$, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)$. Gamma density: $f(x)=\frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

Results:

- Model and KPZ exponents (S 2010).
- Large deviations (Georgiou-S 2011).

Log-gamma polymer

$$
\Pi_{m, n}=\{\text { up-right lattice paths } x .:(1,1) \rightarrow(m, n)\}
$$

$$
\text { Weights } Y_{i, j}=e^{\omega(i, j)} \quad \beta=1
$$

$$
\text { IID environment }\left\{Y_{i, j}:(i, j) \in \mathbb{N}^{2}\right\}
$$

Partition function: $\quad Z_{m, n}=\sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}}$
Fix $0<\mu<\infty$, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)$. Gamma density: $f(x)=\frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

Results:

- Model and KPZ exponents (S 2010).
- Large deviations (Georgiou-S 2011).
- Tropical combinatorics (Corwin-O'Connell-S-Zygouras 2011).

Log-gamma polymer

$$
\Pi_{m, n}=\{\text { up-right lattice paths } x .:(1,1) \rightarrow(m, n)\}
$$

$$
\text { Weights } Y_{i, j}=e^{\omega(i, j)} \quad \beta=1
$$

$$
\text { IID environment }\left\{Y_{i, j}:(i, j) \in \mathbb{N}^{2}\right\}
$$

Partition function: $\quad Z_{m, n}=\sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}}$
Fix $0<\mu<\infty$, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)$. Gamma density: $f(x)=\frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

Results:

- Model and KPZ exponents (S 2010).
- Large deviations (Georgiou-S 2011).
- Tropical combinatorics (Corwin-O'Connell-S-Zygouras 2011).
- Tracy-Widom limit (Borodin-Corwin-Remenik 2012).

Last passage percolation $=$ zero-temperature polymer

Last passage percolation = zero-temperature polymer

For example, for pinned model:

$$
\begin{gathered}
Z_{n, u}=E\left[\exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, X_{k}\right)\right\}, X_{n}=u\right] \\
Q_{n, u}(x .)=\frac{1}{Z_{n, u}} \exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, x_{k}\right)\right\} \mathbf{1}\left\{x_{n}=u\right\} P\left(x_{.}\right)
\end{gathered}
$$

Last passage percolation $=$ zero-temperature polymer

For example, for pinned model:

$$
\begin{gathered}
Z_{n, u}=E\left[\exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, X_{k}\right)\right\}, X_{n}=u\right] \\
Q_{n, u}(x .)=\frac{1}{Z_{n, u}} \exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, x_{k}\right)\right\} \mathbf{1}\left\{x_{n}=u\right\} P(x .)
\end{gathered}
$$

Zero-temperature limit:

$$
\lim _{\beta \rightarrow \infty} \beta^{-1} \log Z_{n, u}=\max _{x:: 0 \rightarrow u} \sum_{k=1}^{n} \omega\left(k, x_{k}\right)
$$

Last passage percolation $=$ zero-temperature polymer

For example, for pinned model:

$$
\begin{gathered}
Z_{n, u}=E\left[\exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, X_{k}\right)\right\}, X_{n}=u\right] \\
Q_{n, u}(x .)=\frac{1}{Z_{n, u}} \exp \left\{\beta \sum_{k=1}^{n} \omega\left(k, x_{k}\right)\right\} \mathbf{1}\left\{x_{n}=u\right\} P(x .)
\end{gathered}
$$

Zero-temperature limit:

$$
\lim _{\beta \rightarrow \infty} \beta^{-1} \log Z_{n, u}=\max _{x:: 0 \rightarrow u} \sum_{k=1}^{n} \omega\left(k, x_{k}\right)
$$

As $\beta \rightarrow \infty$, polymer measure concentrates on maximizing path(s).

Log-gamma polymer $=$ positive-temperature counterpart of corner growth model/TASEP

Log-gamma polymer $=$ positive-temperature counterpart of corner growth model/TASEP

In log-gamma polymer, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\varepsilon \mu)$.

Log-gamma polymer $=$ positive-temperature counterpart of corner growth model/TASEP

In log-gamma polymer, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\varepsilon \mu)$.

$$
\begin{aligned}
\varepsilon \log Z_{m, n} & =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}} \\
& =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \exp \left\{\varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_{k}}\right\}
\end{aligned}
$$

Log-gamma polymer $=$ positive-temperature counterpart of corner growth model/TASEP

In log-gamma polymer, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\varepsilon \mu)$.

$$
\begin{aligned}
\varepsilon \log Z_{m, n} & =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}} \\
& =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \exp \left\{\varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_{k}}\right\}
\end{aligned}
$$

As $\varepsilon \searrow 0$:

Log-gamma polymer $=$ positive-temperature counterpart of corner growth model/TASEP

In log-gamma polymer, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\varepsilon \mu)$.

$$
\begin{aligned}
\varepsilon \log Z_{m, n} & =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}} \\
& =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \exp \left\{\varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_{k}}\right\}
\end{aligned}
$$

As $\varepsilon \searrow 0: \quad \varepsilon \log Y \Rightarrow W \sim \operatorname{Exp}(\mu)$

Log-gamma polymer $=$ positive-temperature counterpart of corner growth model/TASEP

In log-gamma polymer, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\varepsilon \mu)$.

$$
\begin{aligned}
\varepsilon \log Z_{m, n} & =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}} \\
& =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \exp \left\{\varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_{k}}\right\}
\end{aligned}
$$

As $\varepsilon \searrow 0: \quad \varepsilon \log Y \Rightarrow W \sim \operatorname{Exp}(\mu) \quad$ and $\quad \varepsilon \log \sum e^{\varepsilon^{-1} a_{i}} \rightarrow \max a_{i}$

Log-gamma polymer $=$ positive-temperature counterpart of corner growth model/TASEP

In log-gamma polymer, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\varepsilon \mu)$.

$$
\begin{aligned}
\varepsilon \log Z_{m, n} & =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}} \\
& =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \exp \left\{\varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_{k}}\right\}
\end{aligned}
$$

As $\varepsilon \searrow 0: \quad \varepsilon \log Y \Rightarrow W \sim \operatorname{Exp}(\mu) \quad$ and $\quad \varepsilon \log \sum e^{\varepsilon^{-1} a_{i}} \rightarrow \max a_{i}$

$$
\varepsilon \log Z_{m, n} \Rightarrow \max _{x . \in \Pi_{m, n}} \sum_{k=1}^{m+n} W_{x_{k}}
$$

Log-gamma polymer $=$ positive-temperature counterpart of corner growth model/TASEP

In log-gamma polymer, take $Y_{i, j}^{-1} \sim \operatorname{Gamma}(\varepsilon \mu)$.

$$
\begin{aligned}
\varepsilon \log Z_{m, n} & =\varepsilon \log \sum_{x_{.} \in \Pi_{m, n}} \prod_{k=1}^{m+n} Y_{x_{k}} \\
& =\varepsilon \log \sum_{x . \in \Pi_{m, n}} \exp \left\{\varepsilon^{-1} \sum_{k=1}^{m+n} \varepsilon \log Y_{x_{k}}\right\}
\end{aligned}
$$

As $\varepsilon \searrow 0: \quad \varepsilon \log Y \Rightarrow W \sim \operatorname{Exp}(\mu) \quad$ and $\quad \varepsilon \log \sum e^{\varepsilon^{-1} a_{i}} \rightarrow \max a_{i}$

$$
\varepsilon \log Z_{m, n} \Rightarrow \max _{x . \in \Pi_{m, n}} \sum_{k=1}^{m+n} W_{x_{k}}
$$

Limit is the corner growth model with Exp weights.

More details on log-gamma polymer

More details on log-gamma polymer

What is special about this choice of weight distribution?

More details on log-gamma polymer

What is special about this choice of weight distribution?

1. The process has a stationary version

More details on log-gamma polymer

What is special about this choice of weight distribution?

1. The process has a stationary version
2. It can be "solved" with ideas from tropical combinatorics

More details on log-gamma polymer

What is special about this choice of weight distribution?

1. The process has a stationary version
2. It can be "solved" with ideas from tropical combinatorics

Next a look at the stationarity and some consequences.

Stationary version of log-gamma polymer

- Parameters $0<\theta<\mu$.

Stationary version of log-gamma polymer

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}=\{1,2,3, \ldots\}$ as before.

Stationary version of log-gamma polymer

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}=\{1,2,3, \ldots\}$ as before.
- Boundary weights $U_{i, 0}=Y_{i, 0}$ and $V_{0, j}=Y_{0, j}$.

Stationary version of log-gamma polymer

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}=\{1,2,3, \ldots\}$ as before.
- Boundary weights $U_{i, 0}=Y_{i, 0}$ and $V_{0, j}=Y_{0, j}$.

Stationary version of log-gamma polymer

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}=\{1,2,3, \ldots\}$ as before.
- Boundary weights $U_{i, 0}=Y_{i, 0}$ and $V_{0, j}=Y_{0, j}$.

$$
\begin{aligned}
Y_{i, j} & \sim \operatorname{Gamma}^{-1}(\mu) \\
U_{i, 0} & \sim \operatorname{Gamma}^{-1}(\theta) \\
V_{0, j} & \sim \text { Gamma }^{-1}(\mu-\theta)
\end{aligned}
$$

Stationary version of log-gamma polymer

- Parameters $0<\theta<\mu$.
- Bulk weights $Y_{i, j}$ for $i, j \in \mathbb{N}=\{1,2,3, \ldots\}$ as before.
- Boundary weights $U_{i, 0}=Y_{i, 0}$ and $V_{0, j}=Y_{0, j}$.

$$
\begin{aligned}
Y_{i, j} & \sim \operatorname{Gamma}^{-1}(\mu) \\
U_{i, 0} & \sim \operatorname{Gamma}^{-1}(\theta) \\
V_{0, j} & \sim \operatorname{Gamma}^{-1}(\mu-\theta)
\end{aligned}
$$

- $Z_{m, n}^{\theta}=$ partition function for paths $x .:(0,0) \rightarrow(m, n)$

In what sense is the model with boundaries stationary?

In what sense is the model with boundaries stationary?

In (μ, θ)-model, compute partition functions $Z_{m, n}^{\theta} \forall(m, n) \in \mathbb{Z}_{+}^{2}$.

In what sense is the model with boundaries stationary?

In (μ, θ)-model, compute partition functions $Z_{m, n}^{\theta} \forall(m, n) \in \mathbb{Z}_{+}^{2}$.
Define edge weights

$$
\begin{align*}
U_{\left\{x-e_{1}, x\right\}} & =\frac{Z_{x}^{\theta}}{Z_{x-e_{1}}^{\theta}} \quad \text { (horizonta } \tag{horizontal}\\
V_{\left\{x-e_{2}, x\right\}} & =\frac{Z_{x}^{\theta}}{Z_{x-e_{2}}^{\theta}} \quad \text { (vertical) }
\end{align*}
$$

In what sense is the model with boundaries stationary?

In (μ, θ)-model, compute partition functions $Z_{m, n}^{\theta} \forall(m, n) \in \mathbb{Z}_{+}^{2}$.
Define edge weights

$$
\begin{align*}
U_{\left\{x-e_{1}, x\right\}} & =\frac{Z_{x}^{\theta}}{Z_{x-e_{1}}^{\theta}} \quad \text { (horizonta } \tag{horizontal}\\
V_{\left\{x-e_{2}, x\right\}} & =\frac{Z_{x}^{\theta}}{Z_{x-e_{2}}^{\theta}} \quad \text { (vertical) }
\end{align*}
$$

In what sense is the model with boundaries stationary?

In (μ, θ)-model, compute partition functions $Z_{m, n}^{\theta} \forall(m, n) \in \mathbb{Z}_{+}^{2}$.
Define edge weights

$$
\begin{align*}
U_{\left\{x-e_{1}, x\right\}} & =\frac{Z_{x}^{\theta}}{Z_{x-e_{1}}^{\theta}} \quad \text { (horizonta } \tag{horizontal}\\
V_{\left\{x-e_{2}, x\right\}} & =\frac{Z_{x}^{\theta}}{Z_{x-e_{2}}^{\theta}} \quad \text { (vertical) }
\end{align*}
$$

In what sense is the model with boundaries stationary？

In (μ, θ)－model，compute partition functions $Z_{m, n}^{\theta} \forall(m, n) \in \mathbb{Z}_{+}^{2}$ ．
Define edge weights

$$
\begin{align*}
& U_{\left\{x-e_{1}, x\right\}}=\frac{Z_{x}^{\theta}}{Z_{x-e_{1}}^{\theta}} \quad \text { (horizonta } \tag{horizontal}\\
& V_{\left\{x-e_{2}, x\right\}}=\frac{Z_{x}^{\theta}}{Z_{x-e_{2}}^{\theta}} \quad \text { (vertical) }
\end{align*}
$$

ーーー down－right path $\left(z_{k}\right)$ with edges $f_{k}=\left\{z_{k-1}, z_{k}\right\}, k \in \mathbb{Z}$

In what sense is the model with boundaries stationary？

In (μ, θ)－model，compute partition functions $Z_{m, n}^{\theta} \forall(m, n) \in \mathbb{Z}_{+}^{2}$ ．
Define edge weights

$$
\begin{align*}
U_{\left\{x-e_{1}, x\right\}} & =\frac{Z_{x}^{\theta}}{Z_{x-e_{1}}^{\theta}} \quad \text { (horizonta } \tag{horizontal}\\
V_{\left\{x-e_{2}, x\right\}} & =\frac{Z_{x}^{\theta}}{Z_{x-e_{2}}^{\theta}} \quad \text { (vertical) }
\end{align*}
$$

ーー一 down－right path $\left(z_{k}\right)$ with edges $f_{k}=\left\{z_{k-1}, z_{k}\right\}, k \in \mathbb{Z}$

In what sense is the model with boundaries stationary？

In (μ, θ)－model，compute partition functions $Z_{m, n}^{\theta} \forall(m, n) \in \mathbb{Z}_{+}^{2}$ ．
Define edge weights

$$
\begin{align*}
& U_{\left\{x-e_{1}, x\right\}}=\frac{Z_{x}^{\theta}}{Z_{x-e_{1}}^{\theta}} \quad \text { (horizonta } \tag{horizontal}\\
& V_{\left\{x-e_{2}, x\right\}}=\frac{Z_{x}^{\theta}}{Z_{x-e_{2}}^{\theta}} \quad \text { (vertical) }
\end{align*}
$$

ーーー down－right path $\left(z_{k}\right)$ with edges $f_{k}=\left\{z_{k-1}, z_{k}\right\}, k \in \mathbb{Z}$

Theorem. For any fixed down-right path, the edge weights $\left\{U_{f_{k}}, V_{f_{\ell}}\right\}$ along the path are independent, with distributions

$$
U_{f_{k}} \sim \text { Gamma }^{-1}(\theta) \quad V_{f_{\ell}} \sim \text { Gamma }^{-1}(\mu-\theta)
$$

Theorem. For any fixed down-right path, the edge weights $\left\{U_{f_{k}}, V_{f_{\ell}}\right\}$ along the path are independent, with distributions

$$
U_{f_{k}} \sim \operatorname{Gamma}^{-1}(\theta) \quad V_{f_{\ell}} \sim \operatorname{Gamma}^{-1}(\mu-\theta)
$$

No other weight distribution satisfies this.

Theorem. For any fixed down-right path, the edge weights $\left\{U_{f_{k}}, V_{f_{\ell}}\right\}$ along the path are independent, with distributions

$$
U_{f_{k}} \sim \operatorname{Gamma}^{-1}(\theta) \quad V_{f_{\ell}} \sim \operatorname{Gamma}^{-1}(\mu-\theta)
$$

No other weight distribution satisfies this.
\exists analogous property for Exp corner growth model that is a generalization of Burke's Theorem (Output Theorem) for $\mathrm{M} / \mathrm{M} / 1$ queues.

Theorem. For any fixed down-right path, the edge weights $\left\{U_{f_{k}}, V_{f_{\ell}}\right\}$ along the path are independent, with distributions

$$
U_{f_{k}} \sim \operatorname{Gamma}^{-1}(\theta) \quad V_{f_{\ell}} \sim \operatorname{Gamma}^{-1}(\mu-\theta)
$$

No other weight distribution satisfies this.
\exists analogous property for Exp corner growth model that is a generalization of Burke's Theorem (Output Theorem) for $\mathrm{M} / \mathrm{M} / 1$ queues.

We could call this the Burke property of the log-gamma polymer.

Taking advantage of the stationarity

Initial weights $(i, j \in \mathbb{N})$:

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta), \quad V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

Taking advantage of the stationarity

Initial weights $(i, j \in \mathbb{N})$:

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta), \quad V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

Coupling of two log-gamma models:

- Original one with IID bulk weights, paths $(1,1) \rightarrow(m, n)$
- Stationary one, paths $(0,0) \rightarrow(m, n)$

Taking advantage of the stationarity

 Initial weights $(i, j \in \mathbb{N})$:

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta), \quad V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

Coupling of two log-gamma models:

- Original one with IID bulk weights, paths $(1,1) \rightarrow(m, n)$
- Stationary one, paths $(0,0) \rightarrow(m, n)$

Strategy: (i) derive a result for the stationary process
(ii) use coupling to pass results to the original IID model

Taking advantage of the stationarity

Initial weights $(i, j \in \mathbb{N})$:

$$
\begin{aligned}
& U_{i, 0}^{-1} \sim \operatorname{Gamma}(\theta), \quad V_{0, j}^{-1} \sim \operatorname{Gamma}(\mu-\theta) \\
& Y_{i, j}^{-1} \sim \operatorname{Gamma}(\mu)
\end{aligned}
$$

Coupling of two log-gamma models:

- Original one with IID bulk weights, paths $(1,1) \rightarrow(m, n)$
- Stationary one, paths $(0,0) \rightarrow(m, n)$

Strategy: (i) derive a result for the stationary process
(ii) use coupling to pass results to the original IID model

Let us look at fluctuation exponents for $\log Z$.

Fluctuation exponents: stationary case

Fluctuation exponents: stationary case

Exit point of path from x-axis

$$
\xi_{x}=\max \left\{k \geq 0: x_{i}=(i, 0) \text { for } 0 \leq i \leq k\right\}
$$

Fluctuation exponents: stationary case

Exit point of path from x-axis
$\xi_{x}=\max \left\{k \geq 0: x_{i}=(i, 0)\right.$ for $\left.0 \leq i \leq k\right\}$

For $\theta, x>0$ define positive function

$$
L(\theta, x)=\int_{0}^{x}\left(\Psi_{0}(\theta)-\log y\right) x^{-\theta} y^{\theta-1} e^{x-y} d y
$$

Fluctuation exponents: stationary case

Exit point of path from x-axis
$\xi_{x}=\max \left\{k \geq 0: x_{i}=(i, 0)\right.$ for $\left.0 \leq i \leq k\right\}$

For $\theta, x>0$ define positive function

$$
L(\theta, x)=\int_{0}^{x}\left(\Psi_{0}(\theta)-\log y\right) x^{-\theta} y^{\theta-1} e^{x-y} d y
$$

Theorem. For the stationary case,

$$
\mathbb{V a r}\left[\log Z_{m, n}^{\theta}\right]=n \Psi_{1}(\mu-\theta)-m \Psi_{1}(\theta)+2 E_{m, n}\left[\sum_{i=1}^{\xi_{x}} L\left(\theta, Y_{i, 0}^{-1}\right)\right]
$$

Remark: polygamma functions

$$
\Psi_{n}(s)=\frac{d^{n+1}}{d s^{n+1}} \log \Gamma(s), \quad n \geq 0
$$

These appear naturally because for $Y^{-1} \sim \operatorname{Gamma}(\mu)$

$$
\begin{aligned}
\mathbb{E}(\log Y) & =-\Psi_{0}(\mu) \quad \text { (digamma function) } \\
\mathbb{V a r}(\log Y) & =\Psi_{1}(\mu) \quad \text { (trigamma function) }
\end{aligned}
$$

Fluctuation exponent: stationary case

With $0<\theta<\mu$ fixed and $N \nearrow \infty$ assume

$$
\begin{equation*}
\left|m-N \Psi_{1}(\mu-\theta)\right| \leq C N^{2 / 3} \quad \text { and } \quad\left|n-N \Psi_{1}(\theta)\right| \leq C N^{2 / 3} \tag{1}
\end{equation*}
$$

Fluctuation exponent: stationary case

With $0<\theta<\mu$ fixed and $N \nearrow \infty$ assume

$$
\begin{equation*}
\left|m-N \Psi_{1}(\mu-\theta)\right| \leq C N^{2 / 3} \quad \text { and } \quad\left|n-N \Psi_{1}(\theta)\right| \leq C N^{2 / 3} \tag{1}
\end{equation*}
$$

Theorem: Variance bounds in characteristic direction For (m, n) as in (1), $\quad C_{1} N^{2 / 3} \leq \operatorname{Var}\left(\log Z_{m, n}^{\theta}\right) \leq C_{2} N^{2 / 3}$.

Fluctuation exponent: stationary case

With $0<\theta<\mu$ fixed and $N \nearrow \infty$ assume

$$
\begin{equation*}
\left|m-N \Psi_{1}(\mu-\theta)\right| \leq C N^{2 / 3} \quad \text { and } \quad\left|n-N \Psi_{1}(\theta)\right| \leq C N^{2 / 3} \tag{1}
\end{equation*}
$$

Theorem: Variance bounds in characteristic direction
For (m, n) as in (1), $\quad C_{1} N^{2 / 3} \leq \operatorname{Var}\left(\log Z_{m, n}^{\theta}\right) \leq C_{2} N^{2 / 3}$.

Theorem: Off-characteristic CLT

Suppose $n=\Psi_{1}(\theta) N$ and $m=\Psi_{1}(\mu-\theta) N+\gamma N^{\alpha}$ with $\gamma>0, \alpha>2 / 3$.
Then

$$
N^{-\alpha / 2}\left\{\log Z_{m, n}^{\theta}-\mathbb{E}\left(\log Z_{m, n}^{\theta}\right)\right\} \Rightarrow \mathcal{N}\left(0, \gamma \Psi_{1}(\theta)\right)
$$

Fluctuation bounds: original i.i.d. case

Fluctuation bounds: original i.i.d. case

$$
p_{s, t}(\mu) \equiv \lim _{N \rightarrow \infty} \frac{\log Z_{N s, N t}}{N}=\inf _{\theta \in(0, \mu)}\left\{-s \Psi_{0}(\theta)-t \Psi_{0}(\mu-\theta)\right\}
$$

Fluctuation bounds: original i.i.d. case

$$
p_{s, t}(\mu) \equiv \lim _{N \rightarrow \infty} \frac{\log Z_{N s, N t}}{N}=\inf _{\theta \in(0, \mu)}\left\{-s \Psi_{0}(\theta)-t \Psi_{0}(\mu-\theta)\right\}
$$

Theorem. For $1 \leq p<3 / 2$:

$$
C_{1} N^{p / 3} \leq \mathbb{E}\left[\left|\log Z_{N s, N t}-N p_{s, t}(\mu)\right|^{p}\right] \leq C_{2} N^{p / 3}
$$

Fluctuation bounds: original i.i.d. case

$$
p_{s, t}(\mu) \equiv \lim _{N \rightarrow \infty} \frac{\log Z_{N s, N t}}{N}=\inf _{\theta \in(0, \mu)}\left\{-s \Psi_{0}(\theta)-t \Psi_{0}(\mu-\theta)\right\}
$$

Theorem. For $1 \leq p<3 / 2$:

$$
C_{1} N^{p / 3} \leq \mathbb{E}\left[\left|\log Z_{N s, N t}-N p_{s, t}(\mu)\right|^{p}\right] \leq C_{2} N^{p / 3}
$$

Proof idea. Couple to a stationary process with $\theta \in(0, \mu)$ chosen by

$$
s \Psi_{1}(\theta)-t \Psi_{1}(\mu-\theta)=0
$$

Fluctuation bounds: original i.i.d. case

$$
p_{s, t}(\mu) \equiv \lim _{N \rightarrow \infty} \frac{\log Z_{N s, N t}}{N}=\inf _{\theta \in(0, \mu)}\left\{-s \Psi_{0}(\theta)-t \Psi_{0}(\mu-\theta)\right\}
$$

Theorem. For $1 \leq p<3 / 2$:

$$
C_{1} N^{p / 3} \leq \mathbb{E}\left[\left|\log Z_{N s, N t}-N p_{s, t}(\mu)\right|^{p}\right] \leq C_{2} N^{p / 3}
$$

Proof idea. Couple to a stationary process with $\theta \in(0, \mu)$ chosen by

$$
s \Psi_{1}(\theta)-t \Psi_{1}(\mu-\theta)=0
$$

Remark. Similar bounds exist for path with KPZ exponent $2 / 3$.

Explicit large deviations for $\log Z$

L.m.g.f. of $\log Y, Y \sim \Gamma^{-1}(\mu)$:

$$
M_{\mu}(\xi)=\log \mathbb{E}\left(e^{\xi \log Y}\right)= \begin{cases}\log \Gamma(\mu-\xi)-\log \Gamma(\mu) & \xi \in(-\infty, \mu) \\ \infty & \xi \in[\mu, \infty)\end{cases}
$$

Explicit large deviations for $\log Z$

L.m.g.f. of $\log Y, Y \sim \Gamma^{-1}(\mu)$:

$$
M_{\mu}(\xi)=\log \mathbb{E}\left(e^{\xi \log Y}\right)= \begin{cases}\log \Gamma(\mu-\xi)-\log \Gamma(\mu) & \xi \in(-\infty, \mu) \\ \infty & \xi \in[\mu, \infty)\end{cases}
$$

For i.i.d. $\Gamma^{-1}(\mu)$ model, let

$$
\Lambda_{s, t}(\xi)=\lim _{n \rightarrow \infty} n^{-1} \log \mathbb{E}\left(e^{\xi \log Z_{n s, n t}}\right), \quad \xi \in \mathbb{R}
$$

Explicit large deviations for $\log Z$

L.m.g.f. of $\log Y, Y \sim \Gamma^{-1}(\mu)$:

$$
M_{\mu}(\xi)=\log \mathbb{E}\left(e^{\xi \log Y}\right)= \begin{cases}\log \Gamma(\mu-\xi)-\log \Gamma(\mu) & \xi \in(-\infty, \mu) \\ \infty & \xi \in[\mu, \infty)\end{cases}
$$

For i.i.d. $\Gamma^{-1}(\mu)$ model, let

$$
\Lambda_{s, t}(\xi)=\lim _{n \rightarrow \infty} n^{-1} \log \mathbb{E}\left(e^{\xi \log Z_{n s, n t}}\right), \quad \xi \in \mathbb{R}
$$

Theorem. [Georgiou, S 2011]

$$
\Lambda_{s, t}(\xi)= \begin{cases}p(s, t) \xi & \xi<0 \\ \inf _{\theta \in(\xi, \mu)}\left\{t M_{\theta}(\xi)-s M_{\mu-\theta}(-\xi)\right\} & 0 \leq \xi<\mu \\ \infty & \xi \geq \mu\end{cases}
$$

- $\Lambda_{s, t}$ linear on \mathbb{R}_{-}because for $r<p(s, t)$

$$
\lim _{n \rightarrow \infty} n^{-1} \log \mathbb{P}\left\{\log Z_{n s, n t} \leq n r\right\}=-\infty
$$

- $\Lambda_{s, t}$ linear on \mathbb{R}_{-}because for $r<p(s, t)$

$$
\lim _{n \rightarrow \infty} n^{-1} \log \mathbb{P}\left\{\log Z_{n s, n t} \leq n r\right\}=-\infty
$$

- Right tail LDP: for $r \geq p(s, t)$

$$
J_{s, t}(r) \equiv-\lim _{n \rightarrow \infty} n^{-1} \log \mathbb{P}\left\{\log Z_{n s, n t} \geq n r\right\}=\Lambda_{s, t}^{*}(r)
$$

- $\Lambda_{s, t}$ linear on $\mathbb{R}_{\text {- }}$ because for $r<p(s, t)$

$$
\lim _{n \rightarrow \infty} n^{-1} \log \mathbb{P}\left\{\log Z_{n s, n t} \leq n r\right\}=-\infty
$$

- Right tail LDP: for $r \geq p(s, t)$

$$
J_{s, t}(r) \equiv-\lim _{n \rightarrow \infty} n^{-1} \log \mathbb{P}\left\{\log Z_{n s, n t} \geq n r\right\}=\Lambda_{s, t}^{*}(r)
$$

- Proof of formula for $\Lambda_{s, t}$ goes by first finding $J_{s, t}$ and then convex conjugation.

Starting point for proof of large deviations

$$
\begin{aligned}
& Z_{n s, n t}^{\theta}= \sum_{\ell=1}^{n t}(\\
&\left.\prod_{j=1}^{\ell} V_{0, j}\right) Z_{(1, \ell),(n s, n t)} \\
&+\sum_{k=1}^{n s}\left(\prod_{i=1}^{k} U_{i, 0}\right) Z_{(k, 1),(n s, n t)}
\end{aligned}
$$

Starting point for proof of large deviations

$$
\begin{aligned}
Z_{n s, n t}^{\theta}= & \sum_{\ell=1}^{n t}\left(\prod_{j=1}^{\ell} V_{0, j}\right) Z_{(1, \ell),(n s, n t)} \\
& +\sum_{k=1}^{n s}\left(\prod_{i=1}^{k} U_{i, 0}\right) Z_{(k, 1),(n s, n t)}
\end{aligned}
$$

Divide by $\prod_{j=1}^{n t} V_{0, j}$:

$$
\begin{aligned}
\prod_{i=1}^{n s} U_{i, n t}= & \sum_{\ell=1}^{n t}\left(\prod_{j=\ell+1}^{n t} V_{0, j}^{-1}\right) Z_{(1, \ell),(n s, n t)} \\
& +\sum_{k=1}^{n s}\left(\prod_{j=1}^{n t} V_{0, j}^{-1}\right)\left(\prod_{i=1}^{k} U_{i, 0}\right) Z_{(k, 1),(n s, n t)}
\end{aligned}
$$

Starting point for proof of large deviations

$$
\begin{aligned}
& Z_{n s, n t}^{\theta}= \sum_{\ell=1}^{n t}(\\
&\left.\prod_{j=1}^{\ell} V_{0, j}\right) Z_{(1, \ell),(n s, n t)} \\
&+\sum_{k=1}^{n s}\left(\prod_{i=1}^{k} U_{i, 0}\right) Z_{(k, 1),(n s, n t)}
\end{aligned}
$$

Divide by $\prod_{j=1}^{n t} V_{0, j}$:

$$
\begin{aligned}
\prod_{i=1}^{n s} U_{i, n t}= & \sum_{\ell=1}^{n t}\left(\prod_{j=\ell+1}^{n t} V_{0, j}^{-1}\right) Z_{(1, \ell),(n s, n t)} \\
& +\sum_{k=1}^{n s}\left(\prod_{j=1}^{n t} V_{0, j}^{-1}\right)\left(\prod_{i=1}^{k} U_{i, 0}\right) Z_{(k, 1),(n s, n t)}
\end{aligned}
$$

Now we know LDP for $\log (1 . h . s)$ and can extract $\log Z$ from the r.h.s.

Work in progress: intermediate disorder exponents

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim$ order of fluctuations of $\log Z_{n}$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim$ order of fluctuations of $\log Z_{n}$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

$$
\text { KPZ: } \quad \chi=1 / 3 \quad \zeta=2 / 3 \quad(\beta>0)
$$

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim$ order of fluctuations of $\log Z_{n}$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

$$
\begin{array}{llll}
\text { KPZ: } & \chi=1 / 3 & \zeta=2 / 3 & (\beta>0) \\
\text { Diffusive: } & \chi=0 & \zeta=1 / 2 & (\beta=0)
\end{array}
$$

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim$ order of fluctuations of $\log Z_{n}$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

KPZ:	$\chi=1 / 3$	$\zeta=2 / 3$	$(\beta>0)$
Diffusive:	$\chi=0$	$\zeta=1 / 2$	$(\beta=0)$

Intermediate disorder regime: take $\beta=\beta_{0} n^{-\alpha}$.

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim$ order of fluctuations of $\log Z_{n}$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path
KPZ: $\quad \chi=1 / 3 \quad \zeta=2 / 3 \quad(\beta>0)$

Diffusive: $\quad \chi=0 \quad \zeta=1 / 2 \quad(\beta=0)$
Intermediate disorder regime: take $\beta=\beta_{0} n^{-\alpha}$.
Interesting window $\alpha \in[0,1 / 4]$.

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim$ order of fluctuations of $\log Z_{n}$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path
KPZ: $\quad \chi=1 / 3 \quad \zeta=2 / 3 \quad(\beta>0)$

Diffusive: $\quad \chi=0 \quad \zeta=1 / 2 \quad(\beta=0)$
Intermediate disorder regime: take $\beta=\beta_{0} n^{-\alpha}$.
Interesting window $\alpha \in[0,1 / 4]$.
$\alpha=0 \mathrm{KPZ}$ universality $\quad \alpha=1 / 4$ diffusive regime.

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim$ order of fluctuations of $\log Z_{n}$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path
KPZ: $\quad \chi=1 / 3 \quad \zeta=2 / 3 \quad(\beta>0)$

Diffusive: $\quad \chi=0 \quad \zeta=1 / 2 \quad(\beta=0)$
Intermediate disorder regime: take $\beta=\beta_{0} n^{-\alpha}$.
Interesting window $\alpha \in[0,1 / 4]$.
$\alpha=0 \mathrm{KPZ}$ universality $\quad \alpha=1 / 4$ diffusive regime.
Alberts-Khanin-Quastel conj: $\quad \chi(\alpha)=\frac{1}{3}(1-4 \alpha) \quad \zeta(\alpha)=\frac{2}{3}(1-\alpha)$.

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim$ order of fluctuations of $\log Z_{n}$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

$$
\text { KPZ: } \quad \chi=1 / 3 \quad \zeta=2 / 3 \quad(\beta>0)
$$

Diffusive: $\quad \chi=0 \quad \zeta=1 / 2 \quad(\beta=0)$
Intermediate disorder regime: take $\beta=\beta_{0} n^{-\alpha}$.
Interesting window $\alpha \in[0,1 / 4]$.
$\alpha=0 \mathrm{KPZ}$ universality $\quad \alpha=1 / 4$ diffusive regime.
Alberts-Khanin-Quastel conj: $\quad \chi(\alpha)=\frac{1}{3}(1-4 \alpha) \quad \zeta(\alpha)=\frac{2}{3}(1-\alpha)$.
Theorem. These exponents valid for stationary semidiscrete polymer. Upper bounds valid for model without boundaries. [Moreno, S, Valkó]

Semidiscrete polymer

Environment: independent Brownian motions $B_{1}, B_{2}, B_{3}, \ldots$

Semidiscrete polymer

Environment: independent Brownian motions $B_{1}, B_{2}, B_{3}, \ldots$

Partition function:

$$
\begin{aligned}
Z_{n, t}(\beta)= & \int_{0<s_{1}<\cdots<s_{n-1}<t} \exp \left[\beta \left(B_{1}\left(s_{1}\right)+B_{2}\left(s_{2}\right)-B_{2}\left(s_{1}\right)+\right.\right. \\
& \left.\left.+B_{3}\left(s_{3}\right)-B_{3}\left(s_{2}\right)+\cdots+B_{n}(t)-B_{n}\left(s_{n-1}\right)\right)\right] d s_{1, n-1}
\end{aligned}
$$

Semidiscrete polymer

Environment: independent Brownian motions $B_{1}, B_{2}, B_{3}, \ldots$

Partition function:

$$
\begin{aligned}
Z_{n, t}(\beta)= & \int_{0<s_{1}<\cdots<s_{n-1}<t} \exp \left[\beta \left(B_{1}\left(s_{1}\right)+B_{2}\left(s_{2}\right)-B_{2}\left(s_{1}\right)+\right.\right. \\
& \left.\left.+B_{3}\left(s_{3}\right)-B_{3}\left(s_{2}\right)+\cdots+B_{n}(t)-B_{n}\left(s_{n-1}\right)\right)\right] d s_{1, n-1}
\end{aligned}
$$

Results:

- Model by O'Connell-Yor (2001).

Semidiscrete polymer

Environment: independent Brownian motions $B_{1}, B_{2}, B_{3}, \ldots$

Partition function:

$$
\begin{aligned}
Z_{n, t}(\beta)= & \int_{0<s_{1}<\cdots<s_{n-1}<t} \exp \left[\beta \left(B_{1}\left(s_{1}\right)+B_{2}\left(s_{2}\right)-B_{2}\left(s_{1}\right)+\right.\right. \\
& \left.\left.+B_{3}\left(s_{3}\right)-B_{3}\left(s_{2}\right)+\cdots+B_{n}(t)-B_{n}\left(s_{n-1}\right)\right)\right] d s_{1, n-1}
\end{aligned}
$$

Results:

- Model by O'Connell-Yor (2001).
- KPZ exponents by Valkó-S (2010).

Semidiscrete polymer

Environment: independent Brownian motions $B_{1}, B_{2}, B_{3}, \ldots$

Partition function:

$$
\begin{aligned}
Z_{n, t}(\beta)= & \int_{0<s_{1}<\cdots<s_{n-1}<t} \exp \left[\beta \left(B_{1}\left(s_{1}\right)+B_{2}\left(s_{2}\right)-B_{2}\left(s_{1}\right)+\right.\right. \\
& \left.\left.+B_{3}\left(s_{3}\right)-B_{3}\left(s_{2}\right)+\cdots+B_{n}(t)-B_{n}\left(s_{n-1}\right)\right)\right] d s_{1, n-1}
\end{aligned}
$$

Results:

- Model by O'Connell-Yor (2001).
- KPZ exponents by Valkó-S (2010).
- Link to quantum Toda lattice via tropical combinatorics by O'Connell (2010).

Semidiscrete polymer

Environment: independent Brownian motions $B_{1}, B_{2}, B_{3}, \ldots$

Partition function:

$$
\begin{aligned}
Z_{n, t}(\beta)= & \int_{0<s_{1}<\cdots<s_{n-1}<t} \exp \left[\beta \left(B_{1}\left(s_{1}\right)+B_{2}\left(s_{2}\right)-B_{2}\left(s_{1}\right)+\right.\right. \\
& \left.\left.+B_{3}\left(s_{3}\right)-B_{3}\left(s_{2}\right)+\cdots+B_{n}(t)-B_{n}\left(s_{n-1}\right)\right)\right] d s_{1, n-1}
\end{aligned}
$$

Results:

- Model by O'Connell-Yor (2001).
- KPZ exponents by Valkó-S (2010).
- Link to quantum Toda lattice via tropical combinatorics by O'Connell (2010).
- Tracy-Widom limit by Borodin-Corwin (2011), +Ferrari.

