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Outline

1. KPZ vs EW universality in 1+1 dimensional models

2. Three exactly solvable models in KPZ class: KPZ equation,
semi-discrete polymer, log-gamma polymer

3. Specific results for the log-gamma polymer: stationary process,
fluctuation exponents, large deviations

Next talk by N. Zygouras: log-gamma polymer and tropical combinatorics.
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(Toronto), Nicos Georgiou (Utah), Ivan Corwin (Microsoft/MIT), Neil O’Connell

(Warwick), Nikos Zygouras (Warwick), Michael Damron (Indiana)
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KPZ and EW universality for 1+1 dim interface and
polymer models

Characterized by fluctuation exponents and limit distributions.

Kardar-Parisi-Zhang (KPZ)

time ∼ n, spatial correlations ∼ n2/3, fluctuations ∼ n1/3

limits related to Tracy-Widom distributions

Edwards-Wilkinson (EW)

time ∼ n, spatial correlations ∼ n1/2, fluctuations ∼ n1/4

Gaussian limits
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In KPZ class we find 1+1 dimensional

growth models such as last-passage percolation, PNG, ballistic
deposition

particle systems with drift and nonlinear flux function (ASEP, AZRP)

directed polymers

This talk will focus on polymers in KPZ class.

First a brief look at EW class through an example.
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Example from EW class: Random average process (RAP)

Zk

state of the system is

a function σ : Z→ R

Discrete-time evolution:

σt(k) =
∑
j

ωt,k( j)σt−1(k + j)

ωt,k = (ωt,k( j) : | j | ≤ R) random probability vectors, IID over (t, k)

Model introduced by Ferrari-Fontes EJP 1998.

Florence August 2012 5/28



Example from EW class: Random average process (RAP)

Zk

state of the system is

a function σ : Z→ R

Discrete-time evolution:

σt(k) =
∑
j

ωt,k( j)σt−1(k + j)

ωt,k = (ωt,k( j) : | j | ≤ R) random probability vectors, IID over (t, k)

Model introduced by Ferrari-Fontes EJP 1998.

Florence August 2012 5/28



Example from EW class: Random average process (RAP)

Zk

state of the system is

a function σ : Z→ R

Discrete-time evolution:

σt(k) =
∑
j

ωt,k( j)σt−1(k + j)

ωt,k = (ωt,k( j) : | j | ≤ R) random probability vectors, IID over (t, k)

Model introduced by Ferrari-Fontes EJP 1998.

Florence August 2012 5/28



Example from EW class: Random average process (RAP)

Zk

state of the system is

a function σ : Z→ R

Discrete-time evolution:

σt(k) =
∑
j

ωt,k( j)σt−1(k + j)

ωt,k = (ωt,k( j) : | j | ≤ R) random probability vectors, IID over (t, k)

Model introduced by Ferrari-Fontes EJP 1998.

Florence August 2012 5/28



Example from EW class: Random average process (RAP)

Zk

state of the system is

a function σ : Z→ R

Discrete-time evolution:

σt(k) =
∑
j

ωt,k( j)σt−1(k + j)

ωt,k = (ωt,k( j) : | j | ≤ R) random probability vectors, IID over (t, k)

Model introduced by Ferrari-Fontes EJP 1998.

Florence August 2012 5/28



RAP scaling limit

v =
∑
x

x Eω(x) σ2 =
∑
x

(x − v)2 Eω(x).

Initially σ0(0) = 0, IID increments {σ0(i)− σ0(i − 1)} with mean µ0.

Scaled height process

zn(t, r) = n−1/4
{
σbntc(−bntvc+ br

√
n c)− µ0r

√
n
}
, (t, r) ∈ R+ × R.

Theorem. [Balázs, Rassoul-Agha, S. 2006] zn(t, r)⇒ Z (t, r) where Z is the
Gaussian process

Z (t, r) = c1

∫∫
[0,t]×R

pσ2(t−s)(r − x) dW (s, x) + c2

∫
R

pσ2t(r − x)B(x) dx
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Edwards-Wilkinson (EW) universality

RAP is an example from the EW universality class.

In this class also

current of independent random walks (incl. RWRE)

symmetric simple exclusion process

Hammersley’s serial harness process
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KPZ class: 1+1 dim directed polymer
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0 space Z

time N

{ω(k , x)} i.i.d. environment under P

Qn(x �) =
1

Zn
exp
{
β

n∑
k=1

ω(k , xk)
}
P(x �)

Zn = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
} ]

Zn,u = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
}
, Xn = u

]

Model: Huse and Henley 1985
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Expected KPZ behavior

Conjectures. Under a moment assumption on weights:

logZn,nx − np(x)

cn1/3

d−→ FGUE (Tracy-Widom GUE distribution)

Under averaged measure EQn path fluctuations of order n2/3.

Known.

Results for some exactly solvable models.

“Weak universality” of Alberts-Khanin-Quastel.

Universality close to boundary of lattice.
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Three exactly solvable 1+1 dim models

Continuum directed random polymer, or Hopf-Cole solution of the
KPZ equation.

Semidiscrete polymer, or continuous-time random walk paths in
Brownian environment (O’Connell-Yor 2001).

Log-gamma polymer (S 2010).

Macdonald processes: a common algebraic framework (Borodin-Corwin).

For each of these, some degree of KPZ behavior has been verified.

Next brief look at KPZ, then focus on log-gamma.
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KPZ equation

1986 Kardar, Parisi and Zhang: general model for height function h(t, x)
of a 1+1 dimensional interface:

ht = 1
2 hxx + 1

2 (hx)2 +
�
W

Hopf-Cole solution: h = logZ where Z satisfies SHE:

Zt = 1
2 Zxx + Z

�
W

Results that established KPZ behavior:

Var h(t, 0) ∼ t2/3 when h(0, x) = two-sided Brownian motion,
stationary case. (Balázs-Quastel-S. 2011).

Probability distribution for h(t, x), narrow wedge initial condition.
(Amir-Corwin-Quastel and Sasamoto-Spohn 2011).
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Log-gamma polymer

-

6

• •
• • •• •
• •
•

1 m
1

n

Πm,n = { up-right lattice paths x � : (1, 1)→ (m, n) }

Weights Yi, j = eω(i,j) β = 1

IID environment {Yi, j : (i , j) ∈ N2}

Partition function: Zm,n =
∑

x �∈Πm,n

m+n∏
k=1

Yxk

Fix 0 < µ <∞, take Y−1
i, j ∼ Gamma(µ). Gamma density: f (x) = 1

Γ(µ)
xµ−1e−x

Results:

Model and KPZ exponents (S 2010).

Large deviations (Georgiou-S 2011).

Tropical combinatorics (Corwin-O’Connell-S-Zygouras 2011).

Tracy-Widom limit (Borodin-Corwin-Remenik 2012).
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Last passage percolation = zero-temperature polymer

For example, for pinned model:

Zn,u = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
}
, Xn = u

]

Qn,u(x �) =
1

Zn,u
exp
{
β

n∑
k=1

ω(k , xk)
}

1{xn = u}P(x �)

Zero-temperature limit:

lim
β→∞

β−1 logZn,u = max
x �: 0→ u

n∑
k=1

ω(k , xk)

As β →∞, polymer measure concentrates on maximizing path(s).
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Log-gamma polymer = positive-temperature counterpart
of corner growth model/TASEP

In log-gamma polymer, take Y−1
i , j ∼ Gamma(εµ).

ε logZm,n = ε log
∑

x �∈Πm,n

m+n∏
k=1

Yxk

= ε log
∑

x �∈Πm,n

exp
{
ε−1

m+n∑
k=1

ε logYxk

}

As ε↘ 0: ε logY ⇒W ∼ Exp(µ) and ε log
∑

eε
−1ai → max ai

ε logZm,n ⇒ max
x �∈Πm,n

m+n∑
k=1

Wxk

Limit is the corner growth model with Exp weights.
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More details on log-gamma polymer

What is special about this choice of weight distribution?

1. The process has a stationary version

2. It can be “solved” with ideas from tropical combinatorics

Next a look at the stationarity and some consequences.
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Stationary version of log-gamma polymer

Parameters 0 < θ < µ.

Bulk weights Yi , j for i , j ∈ N = {1, 2, 3, . . . } as before.

Boundary weights Ui ,0 = Yi ,0 and V0, j = Y0, j .

-

6

0 1 2 . . .

0

1

...

1

V0, j

Ui,0

Yi, j

Yi , j ∼ Gamma−1(µ)

Ui ,0 ∼ Gamma−1(θ)

V0, j ∼ Gamma−1(µ− θ)

Z θm,n = partition function for paths x � : (0, 0)→ (m, n)
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In what sense is the model with boundaries stationary?

In (µ, θ)-model, compute partition functions Z θm,n ∀ (m, n) ∈ Z2
+.

Define edge weights

U{x−e1,x} =
Z θx

Z θx−e1

(horizontal)

V{x−e2,x} =
Z θx

Z θx−e2

(vertical)

down-right path (zk) with

edges fk = {zk−1, zk}, k ∈ Z
�	

Ufk

� Vf`
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Ufk

� Vf`
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� Vf`

�	
Ufk

Theorem. For any fixed down-right path, the edge weights {Ufk ,Vf`}
along the path are independent, with distributions

Ufk ∼ Gamma−1(θ) Vf` ∼ Gamma−1(µ− θ)

No other weight distribution satisfies this.

∃ analogous property for Exp corner growth model that is a generalization of

Burke’s Theorem (Output Theorem) for M/M/1 queues.

We could call this the Burke property of the log-gamma polymer.
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Taking advantage of the stationarity

-

6

0

0 1

V0, j

Ui,0

Yi, j

Initial weights (i , j ∈ N):

U−1
i,0 ∼ Gamma(θ), V−1

0, j ∼ Gamma(µ− θ)

Y−1
i, j ∼ Gamma(µ)

Coupling of two log-gamma models:

Original one with IID bulk weights, paths (1, 1)→ (m, n)

Stationary one, paths (0, 0)→ (m, n)

Strategy: (i) derive a result for the stationary process

(ii) use coupling to pass results to the original IID model

Let us look at fluctuation exponents for logZ .
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Fluctuation exponents: stationary case

ξx

Exit point of path from x-axis

ξx = max{k ≥ 0 : xi = (i , 0) for 0 ≤ i ≤ k}

For θ, x > 0 define positive function

L(θ, x) =

∫ x

0

(
Ψ0(θ)− log y

)
x−θyθ−1ex−y dy

Theorem. For the stationary case,

Var
[
logZ θm,n

]
= nΨ1(µ− θ)−mΨ1(θ) + 2Em,n

[ ξx∑
i=1

L(θ,Y−1
i ,0 )

]
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Remark: polygamma functions

Ψn(s) =
dn+1

dsn+1
log Γ(s), n ≥ 0

These appear naturally because for Y−1 ∼ Gamma(µ)

E(logY ) = −Ψ0(µ) (digamma function)

Var(logY ) = Ψ1(µ) (trigamma function)
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Fluctuation exponent: stationary case

With 0 < θ < µ fixed and N ↗∞ assume

|m − NΨ1(µ− θ) | ≤ CN2/3 and | n − NΨ1(θ) | ≤ CN2/3 (1)

Theorem: Variance bounds in characteristic direction

For (m, n) as in (1), C1N
2/3 ≤ Var(logZ θm,n) ≤ C2N

2/3 .

Theorem: Off-characteristic CLT

Suppose n = Ψ1(θ)N and m = Ψ1(µ− θ)N + γNα with γ > 0, α > 2/3.
Then

N−α/2
{

logZ θm,n − E
(
logZ θm,n

)}
⇒ N

(
0, γΨ1(θ)

)
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Fluctuation bounds: original i.i.d. case

ps,t(µ) ≡ lim
N→∞

logZNs,Nt

N
= inf

θ∈(0, µ)
{−sΨ0(θ)− tΨ0(µ− θ)}

Theorem. For 1 ≤ p < 3/2:

C1N
p/3 ≤ E

[
| logZNs,Nt − Nps,t(µ) |p

]
≤ C2N

p/3

Proof idea. Couple to a stationary process with θ ∈ (0, µ) chosen by

sΨ1(θ)− tΨ1(µ− θ) = 0

Remark. Similar bounds exist for path with KPZ exponent 2/3.
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Explicit large deviations for log Z

L.m.g.f. of logY , Y ∼ Γ−1(µ):

Mµ(ξ) = logE
(
eξ log Y

)
=

{
log Γ(µ− ξ)− log Γ(µ) ξ ∈ (−∞, µ)

∞ ξ ∈ [µ,∞).

For i.i.d. Γ−1(µ) model, let

Λs,t(ξ) = lim
n→∞

n−1 logE
(
eξ log Zns,nt

)
, ξ ∈ R

Theorem. [Georgiou, S 2011]

Λs,t(ξ) =


p(s, t)ξ ξ < 0

inf
θ∈(ξ,µ)

{
tMθ(ξ) − sMµ−θ(−ξ)

}
0 ≤ ξ < µ

∞ ξ ≥ µ.
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Λs,t linear on R− because for r < p(s, t)

lim
n→∞

n−1 logP{logZns,nt ≤ nr} = −∞.

Right tail LDP: for r ≥ p(s, t)

Js,t(r) ≡ − lim
n→∞

n−1 logP{logZns,nt ≥ nr} = Λ∗s,t(r)

Proof of formula for Λs,t goes by first finding Js,t and then convex
conjugation.
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Starting point for proof of large deviations

-

6

•
•
•
• • • •• •

• •
• • •

0 1 bnsc

0

1

bntc

`

Z θns,nt =
nt∑
`=1

(∏̀
j=1

V0, j

)
Z(1,`),(ns,nt)

+
ns∑
k=1

( k∏
i=1

Ui,0

)
Z(k,1),(ns,nt)

Divide by
∏nt

j=1 V0, j :

ns∏
i=1

Ui,nt =
nt∑
`=1

( nt∏
j=`+1

V−1
0, j

)
Z(1,`),(ns,nt)

+
ns∑
k=1

( nt∏
j=1

V−1
0, j

)( k∏
i=1

Ui,0

)
Z(k,1),(ns,nt)

Now we know LDP for log(l.h.s) and can extract logZ from the r.h.s.
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Work in progress: intermediate disorder exponents

Fluctuation exponents:

nχ ∼ order of fluctuations of logZn

nζ ∼ order of fluctuations of the polymer path

KPZ: χ = 1/3 ζ = 2/3 (β > 0)

Diffusive: χ = 0 ζ = 1/2 (β = 0)

Intermediate disorder regime: take β = β0n
−α.

Interesting window α ∈ [0, 1/4].

α = 0 KPZ universality α = 1/4 diffusive regime.

Alberts-Khanin-Quastel conj: χ(α) = 1
3 (1− 4α) ζ(α) = 2

3 (1− α).

Theorem. These exponents valid for stationary semidiscrete polymer.
Upper bounds valid for model without boundaries. [Moreno, S, Valkó]
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Semidiscrete polymer

Environment: independent Brownian motions B1,B2,B3, . . .

Partition function:

Zn,t(β) =

∫
0<s1<···<sn−1<t

exp
[
β
(
B1(s1) + B2(s2)− B2(s1) +

+ B3(s3)− B3(s2) + · · ·+ Bn(t)− Bn(sn−1)
)]

ds1,n−1

Results:

Model by O’Connell-Yor (2001).

KPZ exponents by Valkó-S (2010).

Link to quantum Toda lattice via tropical combinatorics by O’Connell
(2010).

Tracy-Widom limit by Borodin-Corwin (2011), +Ferrari.
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