

SANDPILE MODELS ON RANDOM STRUCTURES Wioletta Ruszel

in collaboration with F. Redig (TU Delft) and E. Saada (CNRS and U Paris V)

Motivation		RESULTS	
 Abelian Sandpile Model (ASM) was introduced by Bak, Tang and Wiesenfeld ([1]) as paradigmatic example of Self-Organized Criticality (SOC) SOC: underlying idea is that simple dynamical mechanism which generates a stationary state in which complex behavior (manifested e.g. through power laws and large avalanches) appears in the limit of large system sizes without any fine-tuning parameter 		Th. 0.1 ([5]) Given a realization of the tree \mathscr{T} , there exists $C > 0$, such that for all $n \ge 1$, $\mu_{\mathscr{T}}(Av(o,\eta) = n) \le CA_n(o,\mathscr{T})4^{-n}2^{\frac{16}{25}n}$. (1) In particular if the tree has growth rate $\limsup_{n\to\infty}\frac{1}{n}\log(A_n(o,\mathscr{T})) < \frac{34}{25}\log(2)$, then the avalanche size decays exponentially.	
8 x 8 electrovigg rat brain slice array	100	∆t 1 ms 2 ms 4 ms 8 ms 16 ms	Th. 0.2 ([5]) For the stationary binary branching with reproduction p there exists a constant C_2 such that averaged over all trees \mathscr{T} ,

Figure 1: recording of neuronal activity by multi-electrode array, Beggs and Plenz ([2])

- neuronal connections can be modelled by a random structure (tree or graph)
- power law behaviour of size of neuronal avalanches measured experimentally by Beggs and Plenz ([2])
- we present some results on random binary trees

The model Γ

Model:

- let $\mathscr{T} \subset \mathscr{B}(p)$, finite subtree of the rootless binary tree with branching parameter $p \in [0,1]$ (with probability p each vertex has 2 children and 0 w.p. 1-p, for p=1we find the Bethe lattice)
- a height configuration η is a map $\eta : \mathscr{T} \to \mathbb{N}^{\mathscr{T}}$,

cut off

Figure 2: recorded size distributions for avalanches, different time bins

 $\mathbb{E}(\mu_{\mathscr{T}}(|Av(o,\eta)|=n)) \le C_2 2^{\frac{16}{25}n} \left(\frac{p+\sqrt{p}}{2}\right)^n,$ (2)

if $p < p_0 = 0,54511...$ then the averaged probability of an avalanche of size n decays exponentially.

DISCUSSION

• on the lattice \mathbb{Z}^d simulations (see e.g. [7]) suggest the conjecture

 $\lim_{V \to \mathbb{Z}^d} \mu_V(|Av(0,\eta)| > n) \approx Cn^{-\delta}$

- (3)
- where μ_V denotes the finite-volume stationary measure
- explicit analysis on the lattice is highly non-trivial, only few rigorous results are known, e.g. about height probabilities and tails of certain correlations functions [4]
- rigorous results only for the Bethe lattice $\mathscr{B}(1)$ by Dhar and Majumdar [3]:
 - 1. the number of clusters of size n is independent of its shape $A_n(0,\mathscr{B}(1)) = C4^n n^{-3/2} (1 + o(1))$
 - 2. power law decay of avalanche sizes: $|\mu_{\mathscr{T}}(|Av(u,\eta)|=n) \approx n^{-3/2}$ where $\mathscr{T} \subset \mathscr{B}(1)$
- we have an exact expression of $\mathbb{E}(A_n(o, \mathscr{T}))$, the dominant contribution comes from the term $((p + \sqrt{p})/2)^n$, in contrast to the Bethe lattice, the (random) number of

- η is called stable if $\forall i \in \mathscr{T} : 1 \leq \eta_i \leq 3$
- during a toppling of an unstable site u, the height η_u decreases by 3 and the height of all nearest neighbours of u increases by 1
- $\mathscr{S}(\eta + \delta_u)$ is the unique stable configuration arising from a sequence of topplings upon adding a particle at site u to the stable configuration η , (toppling order does not matter due to the abelian property)
- (commuting) addition operator a_u via $a_u(\eta) := \mathscr{S}(\eta + \delta_u)$

Dynamics:

- dynamics of the sandpile model is the discrete-time Markov chain $\{\eta(n), n \in \mathbb{N}\}$, defined by $\eta(n) = \prod_{i=1}^{n} a_{X_i}(\eta(0))$ and $(X_i)_{i \in \mathscr{T}}$ are i.i.d. vertices uniformly chosen from \mathscr{T} (at every time step pick a site uniformly at random, add a particle and stabilize if necessary)
- avalanche: $Av(i, \eta)$ denotes the set of sites which have to be toppled upon addition at i in η
- $A_n(i, \mathscr{T})$ denotes the number of connected subsets $\mathscr{C} \subset \mathscr{T}$ containing i and of size \mathcal{N}
- $\mu_{\mathscr{T}}$ denotes the unique stationary measure for the dynamics, given \mathscr{T}

clusters of size n becomes dependent on the underlying environment

- in [5] we also obtained bounds on the quenched and annealed covariance of height variables at distance n
- combining the results it follows that there is a phase transition phenomenon in the distribution of avalanche sizes: there exists $p_c \in (p_0, 1]$ such that the average avalanche sizes changes from exponential to power law decay!

CURRENT AND FUTURE INVESTIGATIONS

Current:

- avalanches can be decomposed into so-called waves whose size is related to the number of ends of spanning trees
- we investigate quenched and annealed behaviour of avalanche sizes on a Galton-Watson branching process using this correspondence

Future:

- once we understood how sandpile models behave on general random trees, we can extend the analysis to locally tree-like random graphs (e.g. with a power-law degree distribution)
- experimental evidence that functional connectivity of neuronal connections has fea-

EXAMPLE

Figure 3: example of an unstable configuration

Figure 4: after the first toppling

Figure 5: new unstable configuration

tures of power-law and small-world random graphs (see [6])

REFERENCES

- Bak, P.; Tang, K.; Wiesenfeld, K. Self-Organized Criticality Phys. Rev. A, 38, 364-374, (1988).
- Beggs, J.M.; Plenz, D. Neuronal Avalanches in Neocortical Circuits J. of Neurosc., December 3, 23, 11167-11177, (2003).
- Dhar, D.; Majumdar, S.N. Abelian sandpile model on the Bethe lattice J. Phys. A: Math. Gen. 23, 4333-4350, (1990).
- Priezzhev, V.B. Structure of two-dimensional sandpile. I. Height probabilities J. Stat. Phys., Volume 74, Numbers 5-6, 955-979, (1994).
- Redig, F.; Ruszel, W.M.; Saada, E. The abelian sandpile model on the random binary tree J. Stat. $\left[5\right]$ Phys., Volume 147, Number 4, 653-677, (2012).
- Stam, C.J.; van Straaten, E.C. The organization of physiological brain networks Clin Neurophysiol., [6]123, 6, 1067-87, (2012).

Turcotte, D.L. Self-organized criticality Rep. Prog. Phys. 62, 1377-1429, (1999).