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Motivation
• Abelian Sandpile Model (ASM) was introduced by Bak, Tang and Wiesenfeld ([1])

as paradigmatic example of Self-Organized Criticality (SOC)

• SOC: underlying idea is that simple dynamical mechanism which generates a sta-
tionary state in which complex behavior (manifested e.g. through power laws and
large avalanches) appears in the limit of large system sizes without any fine-tuning
parameter

Figure 1: recording of neuronal
activity by multi-electrode array,
Beggs and Plenz ([2])

Figure 2: recorded size distribu-
tions for avalanches, different time
bins

• sandpile dynamics related to neuronal firering

• neuronal connections can be modelled by a random structure (tree or graph)

• power law behaviour of size of neuronal avalanches measured experimentally by
Beggs and Plenz ([2])

• we present some results on random binary trees

The model
Model:

• let T ⊂ B(p), finite subtree of the rootless binary tree with branching parameter
p ∈ [0, 1] (with probability p each vertex has 2 children and 0 w.p. 1− p, for p = 1
we find the Bethe lattice)

• a height configuration η is a map η : T → NT ,

• η is called stable if ∀i ∈ T : 1 ≤ ηi ≤ 3

• during a toppling of an unstable site u, the height ηu decreases by 3 and the height
of all nearest neighbours of u increases by 1

• S (η + δu) is the unique stable configuration arising from a sequence of topplings
upon adding a particle at site u to the stable configuration η, (toppling order does
not matter due to the abelian property)

• (commuting) addition operator au via au(η) := S (η + δu)

Dynamics:

• dynamics of the sandpile model is the discrete-time Markov chain {η(n), n ∈ N},
defined by η(n) =

∏n
i=1 aXi

(η(0)) and (Xi)i∈T are i.i.d. vertices uniformly chosen
from T (at every time step pick a site uniformly at random, add a particle and
stabilize if necessary)

• avalanche: Av(i, η) denotes the set of sites which have to be toppled upon addition
at i in η

• An(i,T ) denotes the number of connected subsets C ⊂ T containing i and of size
n

• µT denotes the unique stationary measure for the dynamics, given T

Example
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Figure 3: example
of an unstable config-
uration
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Figure 4: after the
first toppling
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Figure 5: new un-
stable configuration

...

...

...

...

...

...
Avalanche
size=3

Figure 6: resulting
stable configuration,
avalanche of size 3

Results
Th. 0.1 ([5]) Given a realization of the tree T , there exists C > 0, such that for all
n ≥ 1,

µT (|Av(o, η)| = n) ≤ CAn(o,T )4−n2
16
25n. (1)

In particular if the tree has growth rate lim supn→∞
1
n log(An(o,T )) < 34

25 log(2), then the
avalanche size decays exponentially.

Th. 0.2 ([5]) For the stationary binary branching with reproduction p there exists a con-
stant C2 such that averaged over all trees T ,

E(µT (|Av(o, η)| = n)) ≤ C22
16
25n

(
p+
√
p

2

)n
, (2)

if p < p0 = 0, 54511... then the averaged probability of an avalanche of size n decays
exponentially.

Discussion

• on the lattice Zd simulations (see e.g. [7]) suggest the conjecture

lim
V→Zd

µV (|Av(0, η)| > n) ≈ Cn−δ (3)

where µV denotes the finite-volume stationary measure

• explicit analysis on the lattice is highly non-trivial, only few rigorous results are
known, e.g. about height probabilities and tails of certain correlations functions [4]

• rigorous results only for the Bethe lattice B(1) by Dhar and Majumdar [3]:

1. the number of clusters of size n is independent of its shape
An(0,B(1)) = C4nn−3/2(1 + o(1))

2. power law decay of avalanche sizes:
µT (|Av(u, η)| = n) ≈ n−3/2 where T ⊂ B(1)

• we have an exact expression of E(An(o,T )), the dominant contribution comes from
the term ((p +

√
p)/2)n, in contrast to the Bethe lattice, the (random) number of

clusters of size n becomes dependent on the underlying environment

• in [5] we also obtained bounds on the quenched and annealed covariance of height
variables at distance n

• combining the results it follows that there is a phase transition phenomenon in
the distribution of avalanche sizes: there exists pc ∈ (p0, 1] such that the average
avalanche sizes changes from exponential to power law decay!

Current and future investigations
Current:

• avalanches can be decomposed into so-called waves whose size is related to the num-
ber of ends of spanning trees

• we investigate quenched and annealed behaviour of avalanche sizes on a Galton-
Watson branching process using this correspondance

Future:

• once we understood how sandpile models behave on general random trees, we can
extend the analysis to locally tree-like random graphs (e.g. with a power-law degree
distribution)

• experimental evidence that functional connectivity of neuronal connections has fea-
tures of power-law and small-world random graphs (see [6])
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