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Our initial motivation comes from studying phase transitions
for a system of particles in the continuum interacting via a
Kac potential, as in the LMP model (Lebowitz, Mazel, Presutti
“Liquid-vapor phase transitions for systems with finite-range
interactions.”, J. Stat. Phys. 94, 955-1025 (1999)), with extra
short range interaction.

In such a case the main step is to eliminate some degrees of
freedom of the system by partitioning the space into boxes and
defining a coarse-grained functional for the order parameter,
which brings us in a multi-canonical set-up.

The prototype example of such a case is the calculation of the
free energy functional with respect to the density by cluster
expanding the canonical partition function.
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Background .

The model

Configuration g = {qs,...,qu} of N particles in a box A ¢ RY
interacting via potential V : RY — R stable and tempered:
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The CANONICAL PARTITION FUNCTION is:
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The problem

P .1
Question: How to cluster expand: WlogZB7,\7N?

Conjecture: Write the log of the c.p.f. as:
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———log n(M)
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polymers: Vi € ¥ (N), ¥ (N):={V:V c{1,...,N}, |V| > 2}
incompatibility: Vi ~Vj & VinVj =0, YVi,Vj € ¥ (N)
activity: {a(V) 1= Ygeqy NG

Cv : set of connected graphs on the vertices V € 9 (N)
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log M) = C|Z',\, CLUSTER EXPANSION
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I:7(N) > Ni |s a multi-index, suppl :={V € ¥(N) : (V) > 0},
I =TveaW)'™), 1t =y 1(V)! and:

1 02v!V)logZg a T
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e Convergence of cluster expansion
e Cancellation of non 2-connected graphs to get in the limit
Mayer’s result!

Mayer’s expansion through grand canonical (1940):

Brp(2) = Y bnZ', pp(2) =y nbnZ' (z= B activity)
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Bn.1: set 2-connected graphs on (n+ 1) vertices
g=(V(9),E(9)), V(g): vertices, E(g): edges

Bfs(p) =

m+1

Bn:=

lim — Mayer’s coefficients
A= [A[N!

aip{pIOQZ— Bps(2)} = plogz(p) — Bpp(z(p))
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Mayer’s expansion <
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Main result

There exists co = co(3,B) > 0 such that if pC(B) < co then:
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with N = |p|A||, and for all n > 1:
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Sketch of the proof
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by cancellations of terms both at finite volume and in the limit.
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