Comm. Math. Phys. (to appear)

Background

Our initial motivation comes from studying phase transitions for a system of particles in the continuum interacting via a Kac potential, as in the LMP model (Lebowitz, Mazel, Presutti "Liquid-vapor phase transitions for systems with finite-range interactions.", J. Stat. Phys. 94, 955-1025 (1999)), with extra short range interaction.

In such a case the main step is to eliminate some degrees of freedom of the system by partitioning the space into boxes and defining a coarse-grained functional for the order parameter, which brings us in a multi-canonical set-up.
The prototype example of such a case is the calculation of the free energy functional with respect to the density by cluster expanding the canonical partition function.

The model

Configuration $\mathbf{q} \equiv\left\{q_{1}, \ldots, q_{N}\right\}$ of N particles in a box $\Lambda \subset \mathbb{R}^{d}$ interacting via potential $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ stable and tempered:

$$
\begin{aligned}
& \sum_{1 \leq i<j \leq N} V\left(q_{i}-q_{j}\right) \geq-B N \\
C(\beta):= & \int_{\mathbb{R}^{d}}\left|e^{-\beta V(q)}-1\right| d q<\infty
\end{aligned}
$$

The CANONICAL PARTITION FUNCTION is:
$Z_{\beta, \Lambda, N}:=\frac{1}{N!} \int_{\Lambda^{N}} d q_{1} \ldots d q_{N} e^{-\beta H_{\Lambda}(\mathbf{q})}, \quad H_{\Lambda}(\mathbf{q}):=\sum_{i<j} V\left(q_{i}-q_{j}\right)$

Mayer's expansion

Mayer's expansion through grand canonical (1940):

$$
\begin{aligned}
& \beta p_{\beta}(z)=\sum_{n \geq 1} b_{n} z^{n}, \quad \rho_{\beta}(z)=\sum_{n \geq 1} n b_{n} z^{n} \quad\left(z=e^{\beta \mu}: \text { activity }\right) \\
& \stackrel{z=z(\rho)}{\Longrightarrow} \beta p_{\beta}(\rho)=\rho-\sum_{m \geq 1} \frac{m}{m+1} \beta_{m} \rho^{m+1} \quad \text { VIRIAL EXPANSION } \\
& \beta_{n}:=\lim _{|\Lambda| \rightarrow \infty} \frac{1}{|\Lambda| n!} \sum_{g \in \mathcal{B}_{n+1}} w_{\Lambda}(g), \quad \text { Mayer's coefficients }
\end{aligned}
$$

$$
w_{\Lambda}(g):=\int_{\Lambda^{V(g) \mid} \mid} \prod_{\{i, j\} \in E(g)} f_{i, j} \prod_{i \in V(g)} d q_{i}, \quad f_{i, j}:=e^{-\beta V\left(q_{i}-q_{j}\right)}-1
$$

\mathcal{B}_{n+1} : set 2-connected graphs on ($n+1$) vertices $g \equiv(V(g), E(g)), V(g)$: vertices, $E(g)$: edges

$$
\begin{aligned}
\beta f_{\beta}(\rho) & =\sup _{z}\left\{\rho \log z-\beta p_{\beta}(z)\right\}=\rho \log z(\rho)-\beta p_{\beta}(z(\rho)) \\
& =\rho(\log \rho-1)-\sum_{n \geq 1} \frac{1}{n+1} \beta_{n} \rho^{n+1}
\end{aligned}
$$

The problem

Question: How to cluster expand: $\frac{1}{|\Lambda|} \log Z_{\beta, \Lambda, N}$?
Conjecture: Write the \log of the c.p.f. as:
$\beta f_{\beta, \Lambda}(N):=-\frac{1}{|\Lambda|} \log Z_{\beta, \Lambda, N}=-\frac{1}{|\Lambda|} \log \sum_{\left\{V_{1}, \ldots, V_{k}\right\} \sim} \prod_{i=1}^{k} \zeta_{\Lambda}\left(V_{i}\right)$
polymers: $V_{i} \in \mathcal{V}(N), \mathcal{V}(N):=\{V: V \subset\{1, \ldots, N\},|V| \geq 2\}$
incompatibility: $V_{i} \sim V_{j} \Leftrightarrow V_{i} \cap V_{j}=\emptyset, \forall V_{i}, V_{j} \in \mathcal{V}(N)$
activity: $\zeta_{\Lambda}(V):=\sum_{g \in C_{V}} w_{\Lambda}(g)|\Lambda|^{-|V|}$
\mathcal{C}_{V} : set of connected graphs on the vertices $V \in \mathcal{V}(N)$
$\log \sum_{\left\{V_{1}, \ldots, V_{k}\right\} \sim} \prod_{i=1}^{k} \zeta_{\Lambda}\left(V_{i}\right)=\sum_{I} c_{I} \zeta_{\Lambda}^{I}, \quad$ CLUSTER EXPANSION
$I: \mathcal{V}(N) \rightarrow \mathbb{N}$ is a multi-index, $\operatorname{supp} I:=\{V \in \mathcal{V}(N): I(V)>0\}$, $\zeta_{\Lambda}^{I}=\Pi_{V} \zeta_{\Lambda}(V)^{I(V)}, I!=\Pi_{V} I(V)!$ and:
$c_{I}=\left.\frac{1}{I!} \frac{\partial^{\Sigma_{V} I(V)} \log Z_{\beta, \Lambda, N}}{\partial^{I\left(V_{1}\right)} \zeta_{\Lambda}\left(V_{1}\right) \cdots \partial^{I\left(V_{n}\right)} \zeta_{\Lambda}\left(V_{n}\right)}\right|_{\zeta_{\Lambda}(V)=0}, c_{I} \neq 0$ if I is a cluster

- Convergence of cluster expansion
- Cancellation of non 2-connected graphs to get in the limit Mayer's result!

Main result

There exists $c_{0} \equiv c_{0}(\beta, B)>0$ such that if $\rho C(\beta)<c_{0}$ then:

$$
\frac{1}{|\Lambda|} \log Z_{\beta, \Lambda, N}=\log \frac{|\Lambda|^{N}}{N!}+\frac{N}{|\Lambda|} \sum_{n \geq 1} F_{\beta, N, \Lambda}(n)
$$

with $N=\lfloor\rho|\Lambda|\rfloor$, and for all $n \geq 1$:

$$
\lim _{\substack{N,|\Lambda| \rightarrow \infty \\ N=\lfloor\rho|\Lambda|\rfloor}} F_{\beta, N, \Lambda}(n)=\frac{1}{n+1} \beta_{n} \rho^{n+1}, \quad\left|F_{\beta, N, \Lambda}(n)\right| \leq C e^{-c n} .
$$

Sketch of the proof

$$
\begin{gathered}
F_{\beta, N, \Lambda}(n)=\frac{1}{n+1}\binom{N-1}{n} \sum_{I: A(I)=[n+1]} c_{I} \zeta_{\Lambda}^{I}, \quad A(I)=\bigcup_{V \in \operatorname{supp} I} V \\
\frac{1}{|\Lambda|} \log Z_{\beta, \Lambda, N}=\frac{1}{|\Lambda|} \sum_{I} c_{I} \zeta_{\Lambda}^{I}=\frac{N}{|\Lambda|} \sum_{n \geq 1} F_{N, \Lambda}(n)= \\
=\frac{N}{|\Lambda|} \sum_{n \geq 1} \frac{1}{n+1} \frac{(N-1) \ldots(N-n)}{|\Lambda|^{n}} B_{\beta, \Lambda}(n) \\
B_{\beta, \Lambda}(n):=\frac{|\Lambda|^{n}}{n!} \sum_{I: A(I)=[n+1]} c_{I} \zeta_{\Lambda}^{I} \rightarrow \beta_{n}
\end{gathered}
$$

by cancellations of terms both at finite volume and in the limit.

