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Microstructures

Systems look spatially homogeneous but after magnification show
non trivial spatial patterns.

Homogeneity is lost much earlier than microscopics and can still be
described in terms of continuum theories.

Microstructures thus appear on scales very small in macroscopic
units yet very large microscopically.
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An example.

Microstructures appear in crystals and in magnetic systems when
non elastic effects become important.

There is a good theory of the phenomenon in the context of
variational problems for suitable energy or free energy functionals.

Stefan Müller and his school among the main contributors and I
borrow an example from his lecures on elasticity:
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Müller example.

Minimize the functional

F (u) =

∫ 1

0

(
(
du

dx
)2 − 1

)2
+ u2

F (u) describes a competition between two competing demands:
du

dx
likes to be ±1; u2 wants to be 0.

Both requests can be simultaneously met and the inf of F (u) is 0:
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Figure: minimizing sequence: values between ±ε with slope ±1

The oscillations (microstructures) are effect of competition
between “forces” acting on very different scales:

The integral of u2 is on “scale 1”, du/dx on an infinitesimal scale,
the two scales are infinitely far apart
and as a consequence the period of oscillations is infinitesimal.
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Phase transitions.

The role of the two slopes in statistical mechanics is played by the
two values of the density at phase transition.

I shall restrict to
“ First order phase transitions with order parameter the mass
density”.

It simply means that there is a “forbidden interval” (ρ′, ρ′′) of
density values:

If we put in the box Λ a mass ρ|Λ| of fluid with ρ ∈ (ρ′, ρ′′),
(“canonical constraint”) we do not see a homogeneous density ρ,
but a density ρ′ in a subset Λ′ ⊂ Λ and ρ′′ in the complement.
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The Ginzburg-Landau free energy functional.

Ginzburg-Landau’s explanation of forbidden intervals.

The free energy of a magnetization profile u(x) in Λ = [−L, L] is:

FL(u) =

∫ L

−L

(
u2 − 1

)2
+ (

du

dx
)2

The free energy when the total magnetization is m is:

fL(m) :=
1

2L
inf
{

F (u)
∣∣∣ 1

2L

∫ L

−L
u = m

}
Take u(x) = −1 for x < −ε, u(x) = 1 for x > ε and

u(x) = −1 + 1
ε (x + ε) for x ∈ [−ε, ε]. Then FL(u) <

2ε

2L
+

2εε−2

2L
,

hence fL(0)→ 0 as L→∞.
In most of the space we see magnetization ±1.
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Wulff shape versus microstructures.

As in the Ginzburg-Landau example the interface is in general
smooth. It is in fact determined by the surface tension and it has a
regular shape, the Wulff shape.

Microstructures instead appear when the phases disintegrate into
very many small pieces

for example if we impose the canonical constraint not only globally
but also “locally”.

We want this local canonical constraint to arise from the action of
long range interactions.

Going back to Müller example,
∫

u2 plays the role of the long
range forces and the ±1 slopes correspond to the two pure phase
densities ρ′ and ρ′′.
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Kac potentials
All that brings to mind the Kac theory of van der Waals phase
transitions

with the interplay between long and short range forces.

The limit free energy in Kac systems is:

f m.f.
β (ρ) = φ∗∗β (ρ), φβ(ρ) = e(ρ) + f s.r.

β (ρ)

where φ∗∗β is the convexification of φβ.
The long range Hamiltonian is:

Hγ(q) =

∫
Rd

e(Jγ ∗ q), Jγ ∗ q(r) =
∑
qi∈q

Jγ(r , qi )

Jγ a probability kernel whose range scales as γ−1.

The short range hamiltonian Hs.r.(q) gives rise to the free energy
f s.r.
β (ρ).

The free energy of Hγ + Hs.r. in the limit γ → 0 is f m.f.
β .
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Examples of Kac potentials.

Kac original model:

e(ρ) = −αρ
2

2
, α > 0; the short range force is the hard core

interaction.

LMP model (Lebowitz, Mazel, Presutti):

e(ρ) = −ρ
2

2
+
ρ4

4!
, Hs.r. = 0.

It has phase transitions when γ > 0 is small

The two models are not good for microstructures because:
in the Kac model e(ρ) is concave
in LMP the short range forces do not produce phase transitions.

We want:

I f s.r.
β (ρ) linear (i.e. with a phase transition) in (ρ′, ρ′′)

I φ∗∗β (ρ) = φβ(ρ) in (ρ′, ρ′′)
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LMP plus hard cores.

Fix:
β in a suitable interval;
the hard core radius R suitably small;
the Kac scaling parameter γ, also small.

I shall present first some results then a few conjectures both in the
form of the outcome of an imaginary experiment.

Put in a cube Λ ⊂ R3 of large side L a mass ρ|Λ| and observe the
system by partitioning Λ into cubes C (`) of side `� L.
We observe different behaviors when varying ρ.
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The gas phase.
For small densities ρ:

I Disregarding a very unlikely fluctuation from typical behavior,
we see in a large fractions of cubes C (`) a density close to ρ.

I This is uniform no matter how large is L

I Accuracy improves with `: less and less probable to be in the
unlikely event, the fraction of bad cubes decreases, in the
good cubes closeness to ρ improves.
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Phase transition.
The gas phase persists till ρ ≤ ρ−β,γ;R .

In the interval (ρ−β,γ;R , ρ
+
β,γ;R) there is a phase transition.

Take ρ ∈ (ρ−β,γ;R , ρ
+
β,γ;R), then

I Disregarding unlikely fluctuations, in a large fraction of cubes
C (`) the density is either close to ρ−β,γ;R or to ρ+

β,γ;R .

I As before the picture is uniform in L and sharper as ` increases

I In the cubes with density ≈ ρ−β,γ;R there is vapor; in those

with density ≈ ρ+
β,γ;R there is liquid

E. Pulvirenti, D. Tsagkarogiannis and EP, in preparation.
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Microstructures.

When ρ slightly > ρ+
β,γ;R there is only the liquid phase and the

picture is like for the gas phase. (It follows using a result on
“Gibbs phase rule” by Bovier, Merola, Zahradnik and EP).

What happens at larger densities is only conjectures.

The pure hard spheres system in d = 3 has a phase transition
(from disorder to order) with forbidden density interval (ρ′, ρ′′) (as
suggested by numerical computations).
The liquid phase persists till ρ ≤ ρ′ while the system is in its solid
phase when ρ ≥ ρ′′.
For ρ ∈ (ρ′, ρ′′) there are microstructures.
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The liquid phase persists till ρ ≤ ρ′ while the system is in its solid
phase when ρ ≥ ρ′′.
For ρ ∈ (ρ′, ρ′′) there are microstructures.
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Disregarding as usual unlikely fluctuations we see:

I First regime. ` = γa, a < 1, then in a large fraction of cubes
C (`) the density is either close to ρ′ or to ρ′′.

I Second regime. ` > γa, a > 1, then in a large fraction of
cubes C (`) the density is close to ρ.

I The picture is uniform in L. The second regime gets sharper
as ` increases while to have sharper accuracy in the first
regime we must take γ smaller.
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Rigorous results.

Microstructures have been found as minimizers of free energy
functionals in anelastic crystals and micromagnetism.
A few names: S. Müller, A. De Simone, S. Conti, F. Otto, G.
Alberti,.....

Microstructures as ground states in Ising models with
ferromagnetic short range and antiferromagnetic, reflection
positive long range interactions and as minimizers of Kac-like free
energy functionals.
In a series of papers by A. Giuliani, J. Lebowitz and E. Lieb.

Periodic minimizers in the d = 1 case with computation of period.
Bounds in d > 1.
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One dimensional Ising at T > 0.
[In preparation, M. Cassandro, I. Merola, EP.]

Hγ(σ) = −1
2

∑
x 6=y Jγ(x , y)σ(x)σ(y).

Jγ(x , y) = γJ(γ(|x − y |), J a range 1 probability density.

f m.f.
β (m) = φ∗∗β (m), φβ(m) = −m2

2
− 1

β
S(m)

S(m) = −1+m
2 log 1+m

2 − 1−m
2 log 1−m

2 .

For β > 1: φ∗∗β (m) < φβ(m) for |m| < mβ,
mβ = tanh{βmβ} > 0.
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Fix β > 1 and γ > 0 small enough. Let m ∈ (−mβ,mβ) and
consider the Gibbs measure in Λ (interval of length L) conditioned
to have magnetization m.

Then: there is c(m) > 0 so that for ` = ecγ−1
, c < c(m), in a

large fraction of intervals C (`) the magnetization is either close to
mβ or to −mβ.

Instead for ` = ecγ−1
, c > c(m), in a large fraction of intervals

C (`) the magnetization is m.

The competition here is between the Kac energy which plays the
role of the short range forces while the long range forces are due to
the entropy which in d = 1 is so strong to prevent phase
transitions.
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DLR measures

By equivalence of ensembles we can reduce to study the typical
configurations of DLR measures with magnetic field h (and β > 1).
Relevant h are those for which the average spin m varies in
(−mβ,mβ).

Figure: m versus h in mean field and γ > 0 (dashed line)

Turns out that: h ≈ e−cγ−1
.
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Coarse grained description

The process {σ(x), x ∈ Z} is Markov with range γ−1 (Spitzer).

Too many information in σ, we just want to know where empirical
magnetization is close to ±mβ.

Introduce a phase indicator: Θ(x ;σ): Θ(x ;σ) = ±1 means that
empirical averages around x are close to ±mβ; otherwise
Θ(x ;σ) = 0 no phase can be recognized at x .

Definition such that intervals with Θ = 1 and Θ = −1 are
separated by Θ = 0.
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Interfaces
σ gives rise to a sequence (`i , `

′
i ), i ∈ Z: `i length of i-th interval

with Θ ≥ 0; `′i length of the successive interval with Θ ≤ 0.

The process (`i , `
′
i ) has infinite memory.

However we can cluster together the intervals in a suitable way so
that the clustered intervals have the law of a renewal process.
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