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Diffusion rule

Start with any finite set of Zd containing the origin (Z2 on the figure
below).

0
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Diffusion rule

Launch a random walk from 0 and let it evolve until it hits the border of
the cluster.

0
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Diffusion rule

Add the first point visited by the random walk outside the cluster to the
cluster.

0
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Diffusion rule

This defines the cluster at time n+ 1.

0

Cyrille Lucas Drifted iDLA August 28th, 2012 5 / 34



Diffusion rule

The aggregate is built recursively, by launching independant random walks
from the origin.

0
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Diffusion rule

The aggregate is built recursively, by launching independant random walks
from the origin.

0
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Diffusion rule

As n tends to ∞, the cluster at time n grows.

0
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Definitions

For a first look at the model, we make the following asumptions :

We will work on the lattice Z
d , d ≥ 2.

Our random walks will be simple random walks on this lattice.

Let us start at time 1 with the cluster A(1) = {0}.
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Hausdorff Convergence

Theorem

(Lawler, Bramson and Griffeath, 1992) Let ωd be the volume of the
euclidian unit ball of Rd .

Then the cluster A(ωdn
d) for the simple random walk normalized by n

converges to the euclidian unit ball with respect to the Hausdorff distance.
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Simulation
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The odometer function

A key to understanding the mechanics of the iDLA model is the odometer
function, introduced by Levine and Peres.
It can be defined for all z ∈ Z

d as follows :

un(z) :=

ωdn
d

∑

i=1

σi
∑

j=1

1S i (j)=z ,

where σi is the time at which the i -th random walk adds to the cluster.
This function measures the total number of particles that passed through
z on their way to add to the cluster, with repetitions for multiple passages
of the same particle.
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Mass exchanges and the odometer function

Since the odometer function counts the total number of walks that go
trough a given vertex z , we expect that about 1

2d of these walks will go to
a given neighbour of z . Hence the relations for the total mass received in
or emmited from z :

u(z+e1)
4

u(z+e2)
4

u(z−e1)
4

u(z−e2)
4

Total mass received in z :

u(z)
4

u(z)
4

u(z)
4

u(z)
4

Total mass emmited from z :
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Local relation

u(z+e1)
4

u(z+e2)
4

u(z−e1)
4

u(z−e2)
4

Total mass received in z :

u(z)
4

u(z)
4

u(z)
4

u(z)
4

Total mass emmited from z :

Let ν be the final mass repartition, and σ be the initial mass repartition in
the model. Then we expect the local relation :

E

[

1

4

∑

y∼z

u(y)− u(z)

]

∼ ν(z)− σ(z)
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The Divisible Sandpile model

On Z
d , we start with a compactly supported mass distribution (a pile

of sand).
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The Divisible Sandpile model

Each vertex can safely hold mass 1 of sand. When it holds more, it
can topple.
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The Divisible Sandpile model

When a site topples, the excess is split equally between its nearest
neighbours.
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The Divisible Sandpile model

Every site vertice has or gets excess mass must topple.
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The Divisible Sandpile model

Every site vertice has or gets excess mass must topple.

When all topplings realised, the mass distribution converges to a final
state.
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The Divisible Sandpile model

Every site vertice has or gets excess mass must topple.

When all topplings realised, the mass distribution converges to a final
state.

This final state is made of aggregates of full vertices surrounded by
vertices with mass between 0 and 1.
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The Divisible Sandpile model

Every site vertice has or gets excess mass must topple.

When all topplings realised, the mass distribution converges to a final
state.

This final state is made of aggregates of full vertices surrounded by
vertices with mass between 0 and 1.

The final state does not depend on the order of topplings.

Cyrille Lucas Drifted iDLA August 28th, 2012 18 / 34



Initial mass repartition

These models do not depend on the order of the walks (Markov) or the
topplings (Abelian property), so that we can run them with any initial
mass distribution.
In the following example, an iDLA and a divisible sandpile model are run
starting from a configuration with one particle in each vertex of the
squares (mass 1), except in the intersection, where there are initially two
particles (mass 2).
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Convergence Theorem

Theorem (Levine, Peres, 2008)

Under suitable conditions for the initial mass repartition, when the mesh
tends to 0, the sets obtained as the results of : :

the divisible sandpile model,

the iDLA model

converge to the same limiting shape (with respect to the Hausdorff
measure, and with probability one in the iDLA case).
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Drifted Random Walks

We build the iDLA cluster with drifted random walks :
P (S(t + 1)− S(t) = ±ei ) =

1−p
2(d−1) for i = 1 · · · d − 1, and

P (S(t + 1)− S(t) = ed ) = p.
The local mass equation becomes :

(1−p)u(z+e2)
2

pu(z − e1)

(1−p)u(z−e2)
2

Total mass received in z :

pu(z)

(1−p)u(z)
4

(1−p)u(z)
4

Total mass emmited from z :
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(1−p)u(z+e2)
2

pu(z − e1)

(1−p)u(z−e2)
2

Total mass received in z :

pu(z)

(1−p)u(z)
4

(1−p)u(z)
4

Total mass emmited from z :

Let ν be the final mass repartition, and σ the initial mass repartition. Then
we expect :

1− p

2





∑

y∼z ,(y−z)∈e⊥1

u(y)− u(z)



+ p (u(z − e1)− u(z)) ≈ ν(z)− σ(z)
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Normalization

1− p

2





∑

y∼z ,(y−z)∈e⊥1

u(y)− u(z)



+ p (u(z − e1)− u(z)) ≈ ν(z)− σ(z)
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Normalization

1− p

2





∑

y∼z ,(y−z)∈e⊥1

u(y)− u(z)



+ p (u(z − e1)− u(z)) ≈ ν(z)− σ(z)

These two terms require a different normalization :
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Normalization

1− p

2





∑

y∼z ,(y−z)∈e⊥1

u(y)− u(z)



+ p (u(z − e1)− u(z)) ≈ ν(z)− σ(z)

These two terms require a different normalization :

The mesh size squared for the first term, which looks like a Laplacian,
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Normalization

1− p

2





∑

y∼z ,(y−z)∈e⊥1

u(y)− u(z)



+ p (u(z − e1)− u(z)) ≈ ν(z)− σ(z)

These two terms require a different normalization :

The mesh size squared for the first term, which looks like a Laplacian,

the mesh size for the second term, which looks like a first-order
derivative.
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Normalization

1− p

2





∑

y∼z ,(y−z)∈e⊥1

u(y)− u(z)



+ p (u(z − e1)− u(z)) ≈ ν(z)− σ(z)

These two terms require a different normalization :

The mesh size squared for the first term, which looks like a Laplacian,

the mesh size for the second term, which looks like a first-order
derivative.

We use the following normalization :
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Normalization

1− p

2





∑

y∼z ,(y−z)∈e⊥1

u(y)− u(z)



+ p (u(z − e1)− u(z)) ≈ ν(z)− σ(z)

These two terms require a different normalization :

The mesh size squared for the first term, which looks like a Laplacian,

the mesh size for the second term, which looks like a first-order
derivative.

We use the following normalization :

The first d − 1 coordinates are normalized by n
1

d+1 , and called space
coordinates,
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Normalization

1− p

2





∑

y∼z ,(y−z)∈e⊥1

u(y)− u(z)



+ p (u(z − e1)− u(z)) ≈ ν(z)− σ(z)

These two terms require a different normalization :

The mesh size squared for the first term, which looks like a Laplacian,

the mesh size for the second term, which looks like a first-order
derivative.

We use the following normalization :

The first d − 1 coordinates are normalized by n
1

d+1 , and called space
coordinates,

The last coordinate is normalized by n
2

d+1 and called the time
coordinate.
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Convergence Theorem

Theorem

Let An be the normalized drifted iDLA aggregate. Then, almost surely, An

converges to D, where D ⊂ R
d−1 × R+ has the following property :
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Convergence Theorem

Theorem

Let An be the normalized drifted iDLA aggregate. Then, almost surely, An

converges to D, where D ⊂ R
d−1 × R+ has the following property : Let φ

be a smooth function such that :

1− p

2(d − 1)
∆φ+ p

∂φ

∂t
= 0,

Then φ has the following mean value property :

∫

D

φ(z , t)d(z , t) = |D|φ(0).
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Convergence Theorem

Theorem

Let An be the normalized drifted iDLA aggregate. Then, almost surely, An

converges to D, where D ⊂ R
d−1 × R+ has the following property : Let φ

be a smooth function such that :

1− p

2(d − 1)
∆φ+ p

∂φ

∂t
= 0,

Then φ has the following mean value property :

∫

D

φ(z , t)d(z , t) = |D|φ(0).

Moreover, D is bounded in time and space directions.
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The aggregate with 500 000 particles.
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The “unfair divisible sandpile” model

We define the unfair divisible sandpile model in the same way as the
classical divisible sandpile, with the difference that the mass excess is now
split according to the step distribution of S .

Once again, the model converges towards a final mass distribution
which does not depend on the order of topplings,
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The “unfair divisible sandpile” model

We define the unfair divisible sandpile model in the same way as the
classical divisible sandpile, with the difference that the mass excess is now
split according to the step distribution of S .

Once again, the model converges towards a final mass distribution
which does not depend on the order of topplings,

The mass configuration verifies the local equation

1−p
2

(

∑

y∼z ,y∈e⊥1
u(y)− u(z)

)

+ p (u(z − e1)− u(z)) = ν(z)− σ(z)
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Discrete parabolic free boundary problem

We define the discrete caloric operator

Kf (x) = (1 − p)∆̃f (x)− p (f (x)− f (x − e1)) ,
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Discrete parabolic free boundary problem

We define the discrete caloric operator

Kf (x) = (1 − p)∆̃f (x)− p (f (x)− f (x − e1)) ,

and we want to solve :

Kun(x) =







1− n at the origin
1 inside the aggregate
0 at distance ≥ 2 from the aggregate.
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Discrete parabolic free boundary problem

We define the discrete caloric operator

Kf (x) = (1 − p)∆̃f (x)− p (f (x)− f (x − e1)) ,

and we want to solve :

Kun(x) =







1− n at the origin
1 inside the aggregate
0 at distance ≥ 2 from the aggregate.

Choose a parabolic obstacle function γn such that

Kγn(x) = −1 + nδ(x , 0).

Cyrille Lucas Drifted iDLA August 28th, 2012 27 / 34



Discrete parabolic free boundary problem

We define the discrete caloric operator

Kf (x) = (1 − p)∆̃f (x)− p (f (x)− f (x − e1)) ,

and we want to solve :

Kun(x) =







1− n at the origin
1 inside the aggregate
0 at distance ≥ 2 from the aggregate.

Choose a parabolic obstacle function γn such that

Kγn(x) = −1 + nδ(x , 0).

Then un + γn is the least super-caloric majorant of γn.
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Convergence of the odometer function

In the scaling limit, γn, converges to a continuous obstacle function γ.
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Convergence of the odometer function

In the scaling limit, γn, converges to a continuous obstacle function γ.

γn
least discrete super-caloric majorant
−−−−−−−−−−−−−−−−−−−−−→

discret
un + γn

converges to





y





y
?

γ
least continuous super-caloric majorant
−−−−−−−−−−−−−−−−−−−−−−−→

continu
u + γ
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convergence de l’odomètre

In the scaling limit, γn, converges to a continuous obstacle function γ.

γn
least discrete super-caloric majorant
−−−−−−−−−−−−−−−−−−−−−→

discret
un + γn

converges to





y





yYes !

γ
least continuous super-caloric majorant
−−−−−−−−−−−−−−−−−−−−−−−→

continu
u + γ

Moreover, u verifies the PDE :

1− p

2(d − 1)
∆u − p

∂u

∂t
= 1u>0 − δ0.
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Back to iDLA

Define :

N the number of walks that hit z before leaving Dn or adding to the
aggregate.

0 z
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Back to iDLA

Define :

N the number of walks that hit z before leaving Dn or adding to the
aggregate.
L the number of walks that hit z before leaving Dn but after adding
to the aggregate.

0 z
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Back to iDLA

Define :

N the number of walks that hit z before leaving Dn or adding to the
aggregate.
L the number of walks that hit z before leaving Dn but after adding
to the aggregate.
M the sum of these variables ; it is the number of walks that hit z
before exiting Dn.

0 z
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Reindexing the walks :

Ln =
n

∑

i=1

1
νi<τ iz<τ i

Dn

≤
∑

y∈Dn

1τ yz <τ
y
Dn

= L̃n,
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Define :

fn,Dn
(z) = gn,Dn

(z , z)E
(

Mn(z)− L̃n(z)
)

.

fn,Dn
(z) = gn,Dn

(z , z)





n
∑

i=1

P
(

τ iz < τ iDn

)

−
∑

y∈Dn

P
(

τ yz < τ
y
Dn

)





= gn,Dn
(z , z)

∑

y∈Dn

(δ0(y)n − 1)P(τ yz < τ
y
Dn
).

=
∑

y∈Dn

(δ0(y)n − 1)gn,Dn
(y , z)

So that fn,Dn
(z) and un satisfy the same discrete PDE inside Dn. Hence a

control on E

(

Mn(z)− L̃n(z)
)

.
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