Some generalizations of the KPZ equation

Milton Jara
Joint with C. Bernardin, P. Gonçalves, M. Gubinelli, S. Sethuraman

IMPA, Rio de Janeiro
Villa Finaly, Firenze, 28/08/2012

Outline

Outline

KPZ equation

(1) KPZ equation

(2) A little of recent history
(3) Generalizing the KPZ equation

KPZ equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- KPZ equation, after Kardar-Parisi-Zhang '86:

$$
\partial_{t} h=D(\rho) \Delta h+\frac{a}{2} \lambda(\rho)(\nabla h)^{2}+\sigma(\rho) \mathcal{W}_{t}
$$

where \mathcal{W} is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^{2}(\rho)=2 \chi(\rho) D(\rho)$
- Einstein relation: $\lambda(\rho)=\frac{d}{d \rho}(\chi(\rho) D(\rho))$ [Gonçalves,J.'10]

KPZ equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- KPZ equation, after Kardar-Parisi-Zhang '86:

$$
\partial_{t} h=D(\rho) \Delta h+\frac{a}{2} \lambda(\rho)(\nabla h)^{2}+\sigma(\rho) \mathcal{W}_{t}
$$

where \mathcal{W} is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^{2}(\rho)=2 \chi(\rho) D(\rho)$
- Einstein relation: $\lambda(\rho)=\frac{d}{d \rho}(\chi(\rho) D(\rho))$ [Gonçalves,J.'10]

KPZ equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- KPZ equation, after Kardar-Parisi-Zhang '86:

$$
\partial_{t} h=D(\rho) \Delta h+\frac{a}{2} \lambda(\rho)(\nabla h)^{2}+\sigma(\rho) \mathcal{W}_{t},
$$

where \mathcal{W} is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^{2}(\rho)=2 \chi(\rho) D(\rho)$
- Einstein relation: $\lambda(\rho)=\frac{d}{d \rho}(\chi(\rho) D(\rho))$ [Gonçalves, J.'10]

KPZ equation

Generalizing
KPZ equation
Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- KPZ equation, after Kardar-Parisi-Zhang '86:

$$
\partial_{t} h=D(\rho) \Delta h+\frac{a}{2} \lambda(\rho)(\nabla h)^{2}+\sigma(\rho) \mathcal{W}_{t}
$$

where \mathcal{W} is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^{2}(\rho)=2 \chi(\rho) D(\rho)$
- Einstein relation: $\lambda(\rho)=\frac{d}{d \rho}(\chi(\rho) D(\rho))$ [Gonçalves,J.'10]

KPZ equation

- KPZ equation, after Kardar-Parisi-Zhang '86:

$$
\partial_{t} h=D(\rho) \Delta h+\frac{a}{2} \lambda(\rho)(\nabla h)^{2}+\sigma(\rho) \mathcal{W}_{t}
$$

where \mathcal{W} is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^{2}(\rho)=2 \chi(\rho) D(\rho)$
- Einstein relation: $\lambda(\rho)=\frac{d}{d \rho}(\chi(\rho) D(\rho))$ [Gonçalves,J.'10]

KPZ equation

- KPZ equation, after Kardar-Parisi-Zhang '86:

$$
\partial_{t} h=D(\rho) \Delta h+\frac{a}{2} \lambda(\rho)(\nabla h)^{2}+\sigma(\rho) \mathcal{W}_{t}
$$

where \mathcal{W} is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^{2}(\rho)=2 \chi(\rho) D(\rho)$
- Einstein relation: $\lambda(\rho)=\frac{d}{d \rho}(\chi(\rho) D(\rho))$ [Gonçalves, J.'10]

Stochastic Burgers equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of recent history

Generatizing the KPZ equation

- Formally, $\mathcal{Y}=-\nabla h$ leads to the stochastic Burgers equation

$$
d \mathcal{Y}_{t}=D \Delta \mathcal{Y}_{t} d t+\frac{a}{2} \lambda \nabla \mathcal{Y}_{t}^{2} d t+\sigma \nabla \mathcal{W}_{t}
$$

- White noise is formally conserved \rightarrow ill-posed problem
- Fluctuations of a conserved quantity on 1-d nonlinear systems, near a stationary state

Stochastic Burgers equation

Outline

KPZ equation

- Formally, $\mathcal{Y}=-\nabla h$ leads to the stochastic Burgers equation

$$
d \mathcal{Y}_{t}=D \Delta \mathcal{Y}_{t} d t+\frac{a}{2} \lambda \nabla \mathcal{Y}_{t}^{2} d t+\sigma \nabla \mathcal{W}_{t}
$$

- White noise is formally conserved \rightarrow ill-posed problem
- Fluctuations of a conserved quantity on 1-d nonlinear systems, near a stationary state

Stochastic Burgers equation

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- Formally, $\mathcal{Y}=-\nabla h$ leads to the stochastic Burgers equation

$$
d \mathcal{Y}_{t}=D \Delta \mathcal{Y}_{t} d t+\frac{a}{2} \lambda \nabla \mathcal{Y}_{t}^{2} d t+\sigma \nabla \mathcal{W}_{t}
$$

- White noise is formally conserved \rightarrow ill-posed problem
- Fluctuations of a conserved quantity on 1-d nonlinear systems, near a stationary state

Stochastic heat equation

Generalizing KPZ equation

Milton Jara
Outline
KPZ equation
A little of recent history

Generalizing the KPZ equation

- Itô formula for $z(t, x)=e^{\gamma h(t, x)}$ not true!!!, $\gamma=\frac{2 D}{a \lambda}$ gives

$$
\partial_{t} z=D \Delta z+\frac{a \lambda \sigma}{D} z \mathcal{W}
$$

- Stochastic heat equation \rightarrow well-posed!!!
- $h=\frac{1}{2} \log z$, Cole-Honf solution of KPZ equation
- "Physical" solutions, according to [KPZ, PRL '86]
- Justified by [Bertini-Giacomin, CMP '97] \rightarrow derivation of Cole-Hopf solutions from a microscopic dynamics
- WASEP \rightarrow go to the white-board!!!

Stochastic heat equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- Itô formula for $z(t, x)=e^{\gamma h(t, x)}$ not true!!!, $\gamma=\frac{2 D}{a \lambda}$ gives

$$
\partial_{t} z=D \Delta z+\frac{a \lambda \sigma}{D} z \mathcal{W}
$$

- Stochastic heat equation \rightarrow well-posed!!!
- $h=\frac{1}{\gamma} \log z$, Cole-Hopf solution of KPZ equation
- "Physical" solutions, according to [KPZ, PRL '86]
- Justified by [Bertini-Giacomin, CMP '97] \rightarrow derivation of Cole-Hopf solutions from a microscopic dynamics
- WASEP \rightarrow go to the white-board!!!

Stochastic heat equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- Itô formula for $z(t, x)=e^{\gamma h(t, x)}$ not true!!!, $\gamma=\frac{2 D}{a \lambda}$ gives

$$
\partial_{t} z=D \Delta z+\frac{a \lambda \sigma}{D} z \mathcal{W}
$$

- Stochastic heat equation \rightarrow well-posed!!!
- $h=\frac{1}{\gamma} \log z$, Cole-Hopf solution of KPZ equation
- "Physical" solutions, according to [KPZ, PRL '86]
- Justified by [Bertini-Giacomin, CMP '97] \rightarrow derivation of Cole-Hopf solutions from a microscopic dynamics
- WASEP \rightarrow go to the white-board!!!

Stochastic heat equation

Generalizing
KPZ equation
Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- Itô formula for $z(t, x)=e^{\gamma h(t, x)}$ not true!!!, $\gamma=\frac{2 D}{a \lambda}$ gives

$$
\partial_{t} z=D \Delta z+\frac{a \lambda \sigma}{D} z \mathcal{W}
$$

- Stochastic heat equation \rightarrow well-posed!!!
- $h=\frac{1}{\gamma} \log z$, Cole-Hopf solution of KPZ equation
- "Physical" solutions, according to [KPZ, PRL '86]
- Justified by [Bertini-Giacomin, CMP '97] \rightarrow derivation of Cole-Hopf solutions from a microscopic dynamics
- WASEP \rightarrow go to the white-board!!!

Stochastic heat equation

KPZ equation
A little of recent history

- Itô formula for $z(t, x)=e^{\gamma h(t, x)}$ not true!!!, $\gamma=\frac{2 D}{a \lambda}$ gives

$$
\partial_{t} z=D \Delta z+\frac{a \lambda \sigma}{D} z \mathcal{W}
$$

- Stochastic heat equation \rightarrow well-posed!!!
- $h=\frac{1}{\gamma} \log z$, Cole-Hopf solution of KPZ equation
- "Physical" solutions, according to [KPZ, PRL '86]
- Justified by [Bertini-Giacomin, CMP '97] \rightarrow derivation of Cole-Hopf solutions from a microscopic dynamics \rightarrow very model-dependent
- WASEP \rightarrow go to the white-board!!!

Outline

KPZ equation

- Sasamoto-Spohn arXiv:1002.1879
- Amir-Corwin-Quastel arXiv:1003.0443
- Gonçalves-J. arXiv:1003.4478
- Hairer arXiv:1109.6811

Outline

KPZ equation

- Sasamoto-Spohn arXiv:1002.1879
- Amir-Corwin-Quastel arXiv:1003.0443
- Gonçalves-J. arXiv:1003.4478
- Hairer arXiv:1109.6811

Outline

KPZ equation

- Main technical innovation: two-blocks estimate at the level of fluctuations, without averaging
- Spectral gap + Kipnis-Varadhan + equivalence of ensembles + renormalization
- Robust scheme, not model-dependent [Gonçalves, J.,Sethuraman '12]
- Notion of energy solutions of KPZ-SBE equation

Outline

KPZ equation

Second-order Boltzmann-Gibbs principle

- Main technical innovation: two-blocks estimate at the level of fluctuations, without averaging
- Spectral gap + Kipnis-Varadhan + equivalence of ensembles + renormalization
- Robust scheme, not model-dependent [Gonçalves, J.,Sethuraman '12]
- Notion of energy solutions of KPZ-SBE equation

Second-order Boltzmann-Gibbs principle

Outline

KPZ equation

- Main technical innovation: two-blocks estimate at the level of fluctuations, without averaging
- Spectral gap + Kipnis-Varadhan + equivalence of ensembles + renormalization
- Robust scheme, not model-dependent [Gonçalves, J.,Sethuraman '12]
- Notion of energy solutions of KPZ-SBE equation

Second-order Boltzmann-Gibbs principle

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- Main technical innovation: two-blocks estimate at the level of fluctuations, without averaging
- Spectral gap + Kipnis-Varadhan + equivalence of ensembles + renormalization
- Robust scheme, not model-dependent [Gonçalves, J.,Sethuraman '12]
- Notion of energy solutions of KPZ-SBE equation

Outline

KPZ equation
A little of recent history

Conjecture

Stationary energy solutions of the stochastic Burgers equation are unique in distribution

Theorem (Gonçalves, J. '10, Gonçalves, J.,Sethuraman '12)

Assume the conjecture. Then, density fluctuations of weakly asymmetric, conservative systems are given by the Cole-Hofp solution of the stochastic Burgers equation

Universality of KPZ equation

Generalizing
KPZ equation
Milton Jara

Outline

KPZ equation
A little of recent history

Conjecture

Stationary energy solutions of the stochastic Burgers equation are unique in distribution

Theorem (Gonçalves, J. '10, Gonçalves, J.,Sethuraman '12)

Assume the conjecture. Then, density fluctuations of weakly asymmetric, conservative systems are given by the Cole-Hofp solution of the stochastic Burgers equation

Fractional KPZ equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of
recent history
Generalizing the KPZ
equation

Consider the fractional stochastic Burgers equation

$$
\begin{equation*}
d \mathcal{Y}_{t}=-(-\Delta)^{\theta} \mathcal{Y}_{t} d t+\nabla \mathcal{Y}_{t}^{2} d t+(-\Delta)^{\theta / 2} d \mathcal{W}_{t} \tag{1}
\end{equation*}
$$

Theorem (Gubinelli, J. '12)

- If $\theta>1$, there exist stationary energy solutions of (1)
- If $\theta>5 / 4$ there is at most one stationary energy solution of (1)

Fractional KPZ equation

Generalizing
KPZ equation
Milton Jara

Outline
KPZ equation

Consider the fractional stochastic Burgers equation

$$
\begin{equation*}
d \mathcal{Y}_{t}=-(-\Delta)^{\theta} \mathcal{Y}_{t} d t+\nabla \mathcal{Y}_{t}^{2} d t+(-\Delta)^{\theta / 2} d \mathcal{W}_{t} \tag{1}
\end{equation*}
$$

Theorem (Gubinelli, J. '12)

- If $\theta>1$, there exist stationary energy solutions of (1)
- If $\theta>5 / 4$ there is at most one stationary energy solution of (1)

Outline

KPZ equation
A little of recent history

Generalizing the KPZ
equation

- Regularization of the convective term:

$$
\left.d \mathcal{Y}_{t}=\Delta \mathcal{Y}_{t} d t+(-\Delta)^{-\theta} \nabla(-\Delta)^{-\theta}\right) \mathcal{Y}_{t}^{2} d t+(-\Delta)^{\theta / 2} d \mathcal{W}_{t}
$$

- Da Prato-Debussche-Tubaro '07 \rightarrow uniqueness for $\theta>\frac{1}{8}$
- Existence for $\theta>-\frac{1}{8}$
- Uniqueness for $\theta>\frac{1}{12}$
- Universality result for Sasamoto-Spohn model

Outline

KPZ equation
A little of recent history

Generalizing the KPZ
equation

- Regularization of the convective term:

$$
\left.d \mathcal{Y}_{t}=\Delta \mathcal{Y}_{t} d t+(-\Delta)^{-\theta} \nabla(-\Delta)^{-\theta}\right) \mathcal{Y}_{t}^{2} d t+(-\Delta)^{\theta / 2} d \mathcal{W}_{t}
$$

- Da Prato-Debussche-Tubaro '07 \rightarrow uniqueness for $\theta>\frac{1}{8}$
- Existence for $\theta>-\frac{1}{8}$
- Uniqueness for $\theta>\frac{1}{12}$
- Universality result for Sasamoto-Spohn model

Outline

KPZ equation
A little of recent history

Generalizing the KPZ
equation

- Regularization of the convective term:

$$
\left.d \mathcal{Y}_{t}=\Delta \mathcal{Y}_{t} d t+(-\Delta)^{-\theta} \nabla(-\Delta)^{-\theta}\right) \mathcal{Y}_{t}^{2} d t+(-\Delta)^{\theta / 2} d \mathcal{W}_{t}
$$

- Da Prato-Debussche-Tubaro '07 \rightarrow uniqueness for $\theta>\frac{1}{8}$
- Existence for $\theta>-\frac{1}{8}$
- Uniqueness for $\theta>\frac{1}{12}$
- Universality result for Sasamoto-Spohn model

Outline

KPZ equation

- Regularization of the convective term:

$$
\left.d \mathcal{Y}_{t}=\Delta \mathcal{Y}_{t} d t+(-\Delta)^{-\theta} \nabla(-\Delta)^{-\theta}\right) \mathcal{Y}_{t}^{2} d t+(-\Delta)^{\theta / 2} d \mathcal{W}_{t}
$$

- Da Prato-Debussche-Tubaro '07 \rightarrow uniqueness for $\theta>\frac{1}{8}$
- Existence for $\theta>-\frac{1}{8}$
- Uniqueness for $\theta>\frac{1}{12}$
- Universality result for Sasamoto-Spohn model

Outline

KPZ equation

- Regularization of the convective term:

$$
\left.d \mathcal{Y}_{t}=\Delta \mathcal{Y}_{t} d t+(-\Delta)^{-\theta} \nabla(-\Delta)^{-\theta}\right) \mathcal{Y}_{t}^{2} d t+(-\Delta)^{\theta / 2} d \mathcal{W}_{t}
$$

- Da Prato-Debussche-Tubaro '07 \rightarrow uniqueness for $\theta>\frac{1}{8}$
- Existence for $\theta>-\frac{1}{8}$
- Uniqueness for $\theta>\frac{1}{12}$
- Universality result for Sasamoto-Spohn model

Exclusion process with long jumps

Generalizing KPZ equation

Milton Jara

Outline
KPZ equation
A little of recent history

Generalizing the KPZ
equation

- Why fractional SBE???
- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- $\theta=3 / 4$ is special: if uniqueness holds, we have a $1: 2: 3$ scale-invariant process \rightarrow new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Exclusion process with long jumps

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ
equation

- Why fractional SBE???
- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- $\theta=3 / 4$ is snecial: if uniqueness holds, we have a $1: 2: 3$ scale-invariant process \rightarrow new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Exclusion process with long jumps

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ
equation

- Why fractional SBE???
- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- $\theta=3 / 4$ is snecial: if uniqueness holds, we have a $1: 2: 3$ scale-invariant process \rightarrow new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Exclusion process with long jumps

Generalizing
KPZ equation
Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ
equation

- Why fractional SBE???
- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- $\theta=3 / 4$ is special: if uniqueness holds, we have a $1: 2: 3$ scale-invariant process \rightarrow new universality class???
- Conjecture: anomalous heat equation belongs to fl<PZ universality class

Exclusion process with long jumps

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- Why fractional SBE???
- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- $\theta=3 / 4$ is special: if uniqueness holds, we have a 1:2:3 scale-invariant process \rightarrow new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Exclusion process with long jumps

Outline

KPZ equation

- Why fractional SBE???
- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- $\theta=3 / 4$ is special: if uniqueness holds, we have a 1:2:3 scale-invariant process \rightarrow new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Systems of KPZ equations

Generalizing KPZ equation
Milton Jara
\section*{Outline}
KPZ equation
A little of recent history
Generalizing the KPZ equation

- What if two or more conserved quantities???
- Two or more KPZ equations!!!

$$
d \mathcal{Y}_{t}^{i}=D_{i} \Delta \mathcal{Y}_{t}^{i} d t+\nabla \mathcal{Q}^{i}(\mathcal{Y}) d t+\nabla \mathcal{W}_{t}^{i}
$$

 $\mathcal{W}_{t}=\left(\mathcal{W}_{t}^{1}, \ldots, \mathcal{W}_{t}^{\ell}\right)$ a (possibly correlated) white noise

Systems of KPZ equations

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of recent history

Generalizing the KPZ equation

- What if two or more conserved quantities???
- Two or more KPZ equations!!!

Systems of KPZ equations

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation
A little of
recent history
Generalizing the KPZ
equation

- What if two or more conserved quantities???
- Two or more KPZ equations!!!

$$
d \mathcal{Y}_{t}^{i}=D_{i} \Delta \mathcal{Y}_{t}^{i} d t+\nabla \mathcal{Q}^{i}(\mathcal{Y}) d t+\nabla \mathcal{W}_{t}^{i}
$$

Systems of KPZ equations

Outline

KPZ equation
A little of
recent history
Generalizing the KPZ
equation

- What if two or more conserved quantities???
- Two or more KPZ equations!!!

$$
\begin{gathered}
d \mathcal{Y}_{t}^{i}=D_{i} \Delta \mathcal{Y}_{t}^{i} d t+\nabla \mathcal{Q}^{i}(\mathcal{Y}) d t+\nabla \mathcal{W}_{t}^{i} \\
\mathcal{Y}_{t}=\left(\mathcal{Y}_{t}^{1}, \ldots, \mathcal{Y}_{t}^{\ell}\right), \mathcal{Q}^{i}, \text { quadratic forms on } \mathcal{Y}
\end{gathered}
$$

Systems of KPZ equations

Outline

KPZ equation

- What if two or more conserved quantities???
- Two or more KPZ equations!!!

Generalizing the KPZ
equation

$$
d \mathcal{Y}_{t}^{i}=D_{i} \Delta \mathcal{Y}_{t}^{i} d t+\nabla \mathcal{Q}^{i}(\mathcal{Y}) d t+\nabla \mathcal{W}_{t}^{i}
$$

$\mathcal{Y}_{t}=\left(\mathcal{Y}_{t}^{1}, \ldots, \mathcal{Y}_{t}^{\ell}\right), \mathcal{Q}^{i}$, quadratic forms on \mathcal{Y} $\mathcal{W}_{t}=\left(\mathcal{W}_{t}^{1}, \ldots, \mathcal{W}_{t}^{\ell}\right)$ a (possibly correlated) white noise

Outline

KPZ equation
A little of
recent history
Generalizing the KPZ equation

- Concrete example: Bernardin-Stolz model
- Not-So-Strongly-Stochastically perturbed Hamiltonian chain \rightarrow see the white-board
- Harmonic potential $\left.(V / r)=\frac{1}{2} r^{2}\right)$:

Outline

KPZ equation
A little of
recent history
Generalizing the KPZ

- Concrete example: Bernardin-Stolz model
- Not-So-Strongly-Stochastically perturbed Hamiltonian chain \rightarrow see the white-board
- Harmonic potential $\left(V(r)=\frac{1}{2} r^{2}\right)$:

Outline

KPZ equation
A little of
recent history
Generalizing the KPZ
equation

- Concrete example: Bernardin-Stolz model
- Not-So-Strongly-Stochastically perturbed Hamiltonian chain \rightarrow see the white-board
- Harmonic potential $\left(V(r)=\frac{1}{2} r^{2}\right)$:

$$
\begin{aligned}
& d \mathcal{Y}_{t}=\Delta \mathcal{Y}_{t} d t+d \mathcal{W}_{t}^{1} \\
& d \mathcal{Z}_{t}=\Delta \mathcal{Z}_{t} d t+\nabla \mathcal{Y}_{t}^{2} d t+d \mathcal{W}_{t}^{2}
\end{aligned}
$$

