

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation

Some generalizations of the KPZ equation

Milton Jara Joint with C. Bernardin, P. Gonçalves, M. Gubinelli, S. Sethuraman

IMPA, Rio de Janeiro

Villa Finaly, Firenze, 28/08/2012

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Outline

Generalizing **KPZ** equation

Outline

Image: KPZ equation

2 A little of recent history

Generalizing the KPZ equation

イロト イポト イヨト イヨト э.

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • KPZ equation, after Kardar-Parisi-Zhang '86:

 $\partial_t h = D(\rho)\Delta h + \frac{a}{2}\lambda(\rho)(\nabla h)^2 + \sigma(\rho)\mathcal{W}_t,$

where $\ensuremath{\mathcal{W}}$ is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^2(\rho) = 2\chi(\rho)D(\rho)$
- Einstein relation: $\lambda(\rho) = \frac{d}{d\rho}(\chi(\rho)D(\rho))$ [Gonçalves, J.'10]

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • KPZ equation, after Kardar-Parisi-Zhang '86:

 $\partial_t h = D(\rho)\Delta h + \frac{a}{2}\lambda(\rho)(\nabla h)^2 + \sigma(\rho)\mathcal{W}_t,$

where $\ensuremath{\mathcal{W}}$ is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^2(\rho) = 2\chi(\rho)D(\rho)$
- Einstein relation: $\lambda(\rho) = \frac{d}{d\rho}(\chi(\rho)D(\rho))$ [Gonçalves, J.'10]

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • KPZ equation, after Kardar-Parisi-Zhang '86:

 $\partial_t h = D(\rho)\Delta h + \frac{a}{2}\lambda(\rho)(\nabla h)^2 + \sigma(\rho)\mathcal{W}_t,$

where $\ensuremath{\mathcal{W}}$ is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- \bullet Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^2(\rho) = 2\chi(\rho)D(\rho)$
- Einstein relation: $\lambda(\rho) = \frac{d}{d\rho}(\chi(\rho)D(\rho))$ [Gonçalves, J.'10]

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • KPZ equation, after Kardar-Parisi-Zhang '86:

 $\partial_t h = D(\rho)\Delta h + \frac{a}{2}\lambda(\rho)(\nabla h)^2 + \sigma(\rho)\mathcal{W}_t,$

where $\ensuremath{\mathcal{W}}$ is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- \bullet Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^2(\rho) = 2\chi(\rho)D(\rho)$
- Einstein relation: $\lambda(\rho) = \frac{d}{d\rho}(\chi(\rho)D(\rho))$ [Gonçalves, J.'10]

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • KPZ equation, after Kardar-Parisi-Zhang '86:

 $\partial_t h = D(\rho)\Delta h + \frac{a}{2}\lambda(\rho)(\nabla h)^2 + \sigma(\rho)\mathcal{W}_t,$

where $\ensuremath{\mathcal{W}}$ is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- \bullet Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^2(\rho) = 2\chi(\rho)D(\rho)$
- Einstein relation: $\lambda(\rho) = \frac{d}{d\rho}(\chi(\rho)D(\rho))$ [Gonçalves, J.'10]

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • KPZ equation, after Kardar-Parisi-Zhang '86:

 $\partial_t h = D(\rho)\Delta h + \frac{a}{2}\lambda(\rho)(\nabla h)^2 + \sigma(\rho)\mathcal{W}_t,$

where $\ensuremath{\mathcal{W}}$ is a space-time white noise

- Fluctuations of a flat, 1-d nonlinear interface
- \bullet Solutions are locally Brownian \rightarrow ill-posed problem
- ρ : slope of the interface
- Fluctuation-dissipation relation: $\sigma^2(\rho) = 2\chi(\rho)D(\rho)$
- Einstein relation: $\lambda(\rho) = \frac{d}{d\rho}(\chi(\rho)D(\rho))$ [Gonçalves, J.'10]

Stochastic Burgers equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • Formally, $\mathcal{Y} = -
abla h$ leads to the stochastic Burgers equation

$$d\mathcal{Y}_t = D\Delta \mathcal{Y}_t dt + \frac{a}{2}\lambda \nabla \mathcal{Y}_t^2 dt + \sigma \nabla \mathcal{W}_t$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- White noise is formally conserved \rightarrow ill-posed problem
- Fluctuations of a conserved quantity on 1-d nonlinear systems, near a stationary state

Stochastic Burgers equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • Formally, $\mathcal{Y} = - \nabla h$ leads to the stochastic Burgers equation

$$d\mathcal{Y}_t = D\Delta \mathcal{Y}_t dt + \frac{a}{2}\lambda \nabla \mathcal{Y}_t^2 dt + \sigma \nabla \mathcal{W}_t$$

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~

- \bullet White noise is formally conserved \rightarrow ill-posed problem
- Fluctuations of a conserved quantity on 1-d nonlinear systems, near a stationary state

Stochastic Burgers equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • Formally, $\mathcal{Y} = - \nabla h$ leads to the stochastic Burgers equation

$$d\mathcal{Y}_t = D\Delta \mathcal{Y}_t dt + \frac{a}{2}\lambda \nabla \mathcal{Y}_t^2 dt + \sigma \nabla \mathcal{W}_t$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- \bullet White noise is formally conserved \rightarrow ill-posed problem
- Fluctuations of a conserved quantity on 1-d nonlinear systems, near a stationary state

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation

• Itô formula for
$$z(t,x) = e^{\gamma h(t,x)}$$
 not true!!!, $\gamma = \frac{2D}{a\lambda}$ gives

$$\partial_t z = D\Delta z + \frac{a\lambda\sigma}{D}z\mathcal{W}$$

- Stochastic heat equation → well-posed!!!
- $h = \frac{1}{\gamma} \log z$, Cole-Hopf solution of KPZ equation
- "Physical" solutions, according to [KPZ, PRL '86]
- Justified by [Bertini-Giacomin, CMP '97] → derivation of Cole-Hopf solutions from a microscopic dynamics → very model-dependent
- WASEP \rightarrow go to the white-board!!!

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation

• Itô formula for
$$z(t,x) = e^{\gamma h(t,x)}$$
 not true!!!, $\gamma = \frac{2D}{a\lambda}$ gives

$$\partial_t z = D\Delta z + \frac{a\lambda\sigma}{D}z\mathcal{W}$$

- Stochastic heat equation \rightarrow well-posed!!!
- $h = \frac{1}{\gamma} \log z$, Cole-Hopf solution of KPZ equation
- "Physical" solutions, according to [KPZ, PRL '86]
- Justified by [Bertini-Giacomin, CMP '97] → derivation of Cole-Hopf solutions from a microscopic dynamics → very model-dependent
- WASEP \rightarrow go to the white-board!!!

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • Itô formula for $z(t,x) = e^{\gamma h(t,x)}$ not true!!!, $\gamma = \frac{2D}{a\lambda}$ gives

$$\partial_t z = D\Delta z + \frac{a\lambda\sigma}{D}z\mathcal{W}$$

- Stochastic heat equation \rightarrow well-posed!!!
- $h = \frac{1}{\gamma} \log z$, Cole-Hopf solution of KPZ equation
- "Physical" solutions, according to [KPZ, PRL '86]
- Justified by [Bertini-Giacomin, CMP '97] → derivation of Cole-Hopf solutions from a microscopic dynamics → very model-dependent

• WASEP \rightarrow go to the white-board!!!

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • Itô formula for $z(t,x) = e^{\gamma h(t,x)}$ not true!!!, $\gamma = \frac{2D}{a\lambda}$ gives

$$\partial_t z = D\Delta z + \frac{a\lambda\sigma}{D}z\mathcal{W}$$

- Stochastic heat equation \rightarrow well-posed!!!
- $h = \frac{1}{\gamma} \log z$, Cole-Hopf solution of KPZ equation
- "Physical" solutions, according to [KPZ, PRL '86]
- Justified by [Bertini-Giacomin, CMP '97] → derivation of Cole-Hopf solutions from a microscopic dynamics → very model-dependent
- WASEP \rightarrow go to the white-board!!!

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation • Itô formula for $z(t,x) = e^{\gamma h(t,x)}$ not true!!!, $\gamma = \frac{2D}{a\lambda}$ gives

$$\partial_t z = D\Delta z + \frac{a\lambda\sigma}{D}z\mathcal{W}$$

- Stochastic heat equation \rightarrow well-posed!!!
- $h = \frac{1}{\gamma} \log z$, Cole-Hopf solution of KPZ equation
- "Physical" solutions, according to [KPZ, PRL '86]
- Justified by [Bertini-Giacomin, CMP '97] → derivation of Cole-Hopf solutions from a microscopic dynamics → very model-dependent
- WASEP \rightarrow go to the white-board!!!

A little of recent history

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Sasamoto-Spohn arXiv:1002.1879
- Amir-Corwin-Quastel arXiv:1003.0443

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Gonçalves-J. arXiv:1003.4478
- Hairer arXiv:1109.6811

A little of recent history

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Sasamoto-Spohn arXiv:1002.1879
- Amir-Corwin-Quastel arXiv:1003.0443

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Gonçalves-J. arXiv:1003.4478
- Hairer arXiv:1109.6811

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation

A little of recent history

Generalizing the KPZ equation

- Main technical innovation: two-blocks estimate at the level of fluctuations, without averaging
- Spectral gap + Kipnis-Varadhan + equivalence of ensembles + renormalization
- Robust scheme, not model-dependent [Gonçalves, J.,Sethuraman '12]
- Notion of energy solutions of KPZ-SBE equation

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Main technical innovation: two-blocks estimate at the level of fluctuations, without averaging
- Spectral gap + Kipnis-Varadhan + equivalence of ensembles + renormalization
- Robust scheme, not model-dependent [Gonçalves, J.,Sethuraman '12]
- Notion of energy solutions of KPZ-SBE equation

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Main technical innovation: two-blocks estimate at the level of fluctuations, without averaging
- Spectral gap + Kipnis-Varadhan + equivalence of ensembles + renormalization
- Robust scheme, not model-dependent [Gonçalves, J.,Sethuraman '12]
- Notion of energy solutions of KPZ-SBE equation

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Main technical innovation: two-blocks estimate at the level of fluctuations, without averaging
- Spectral gap + Kipnis-Varadhan + equivalence of ensembles + renormalization
- Robust scheme, not model-dependent [Gonçalves, J.,Sethuraman '12]
- Notion of energy solutions of KPZ-SBE equation

Universality of KPZ equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation

Conjecture

Stationary energy solutions of the stochastic Burgers equation are unique in distribution

Theorem (Gonçalves, J. '10, Gonçalves, J.,Sethuraman '12)

Assume the conjecture. Then, density fluctuations of weakly asymmetric, conservative systems are given by the Cole-Hofp solution of the stochastic Burgers equation

Universality of KPZ equation

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation

Conjecture

Stationary energy solutions of the stochastic Burgers equation are unique in distribution

Theorem (Gonçalves, J. '10, Gonçalves, J.,Sethuraman '12)

Assume the conjecture. Then, density fluctuations of weakly asymmetric, conservative systems are given by the Cole-Hofp solution of the stochastic Burgers equation

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Fractional KPZ equation

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

Consider the fractional stochastic Burgers equation $d\mathcal{Y}_t = -(-\Delta)^{\theta} \mathcal{Y}_t dt + \nabla \mathcal{Y}_t^2 dt + (-\Delta)^{\theta/2} d\mathcal{W}_t \qquad (1)$

Theorem (Gubinelli, J. '12)

- If $\theta > 1$, there exist stationary energy solutions of (1)
- If θ > 5/4 there is at most one stationary energy solution of (1)

Fractional KPZ equation

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

Consider the fractional stochastic Burgers equation

$$d\mathcal{Y}_t = -(-\Delta)^{\theta} \mathcal{Y}_t dt + \nabla \mathcal{Y}_t^2 dt + (-\Delta)^{\theta/2} d\mathcal{W}_t \qquad (1)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Theorem (Gubinelli, <u>J.</u> '12)

- If $\theta > 1$, there exist stationary energy solutions of (1)
- If θ > 5/4 there is at most one stationary energy solution of (1)

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

• Regularization of the convective term:

 $d\mathcal{Y}_t = \Delta \mathcal{Y}_t dt + (-\Delta)^{- heta}
abla (-\Delta)^{- heta}) \mathcal{Y}_t^2 dt + (-\Delta)^{ heta/2} d\mathcal{W}_t$

- Da Prato-Debussche-Tubaro '07 \rightarrow uniqueness for $\theta > \frac{1}{8}$
- Existence for $\theta > -\frac{1}{8}$
- Uniqueness for $\theta > \frac{1}{12}$
- Universality result for Sasamoto-Spohn model

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

• Regularization of the convective term:

$$d\mathcal{Y}_t = \Delta \mathcal{Y}_t dt + (-\Delta)^{- heta}
abla (-\Delta)^{- heta}) \mathcal{Y}_t^2 dt + (-\Delta)^{ heta/2} d\mathcal{W}_t$$

Da Prato-Debussche-Tubaro '07 → uniqueness for θ > ¹/₈
 Existence for θ > -¹/₈

- Uniqueness for $\theta > \frac{1}{12}$
- Universality result for Sasamoto-Spohn model

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

• Regularization of the convective term:

$$d\mathcal{Y}_t = \Delta \mathcal{Y}_t dt + (-\Delta)^{- heta}
abla (-\Delta)^{- heta}) \mathcal{Y}_t^2 dt + (-\Delta)^{ heta/2} d\mathcal{W}_t$$

- Da Prato-Debussche-Tubaro '07 \rightarrow uniqueness for $\theta > \frac{1}{8}$
- Existence for $\theta > -\frac{1}{8}$
- Uniqueness for $\theta > \frac{1}{12}$
- Universality result for Sasamoto-Spohn model

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

• Regularization of the convective term:

$$d\mathcal{Y}_t = \Delta \mathcal{Y}_t dt + (-\Delta)^{- heta}
abla (-\Delta)^{- heta}) \mathcal{Y}_t^2 dt + (-\Delta)^{ heta/2} d\mathcal{W}_t$$

- Da Prato-Debussche-Tubaro '07 \rightarrow uniqueness for $\theta > \frac{1}{8}$
- Existence for $\theta > -\frac{1}{8}$
- Uniqueness for $\theta > \frac{1}{12}$
- Universality result for Sasamoto-Spohn model

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

• Regularization of the convective term:

$$d\mathcal{Y}_t = \Delta \mathcal{Y}_t dt + (-\Delta)^{- heta}
abla (-\Delta)^{- heta}) \mathcal{Y}_t^2 dt + (-\Delta)^{ heta/2} d\mathcal{W}_t$$

- Da Prato-Debussche-Tubaro '07 \rightarrow uniqueness for $\theta > \frac{1}{8}$
- Existence for $\theta > -\frac{1}{8}$
- Uniqueness for $\theta > \frac{1}{12}$
- Universality result for Sasamoto-Spohn model

Generalizing KPZ equation

Milton Jara

Outline

KPZ equation

A little of recent history

Generalizing the KPZ equation

Why fractional SBE???

- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- θ = 3/4 is special: if uniqueness holds, we have a 1:2:3 scale-invariant process → new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Generalizing KPZ equation

Milton Jara

- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Why fractional SBE???
- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- θ = 3/4 is special: if uniqueness holds, we have a 1:2:3 scale-invariant process → new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Generalizing KPZ equation

Milton Jara

- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

Why fractional SBE???

- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- θ = 3/4 is special: if uniqueness holds, we have a 1:2:3 scale-invariant process → new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Generalizing KPZ equation

Milton Jara

- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Why fractional SBE???
- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- $\theta = 3/4$ is special: if uniqueness holds, we have a 1:2:3 scale-invariant process \rightarrow new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Generalizing KPZ equation

Milton Jara

- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Why fractional SBE???
- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- θ = 3/4 is special: if uniqueness holds, we have a 1:2:3 scale-invariant process → new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Generalizing KPZ equation

Milton Jara

- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Why fractional SBE???
- Exclusion process with long jumps, introduced in [J., CPAM '08] \rightarrow see the white-board
- Along subsequences, density fluctuations converge to energy solutions of the fractional SBE
- θ = 3/4 is special: if uniqueness holds, we have a 1:2:3 scale-invariant process → new universality class???
- Conjecture: anomalous heat equation belongs to fKPZ universality class

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- What if two or more conserved quantities???
- Two or more KPZ equations!!!

$$d\mathcal{Y}_t^i = D_i \Delta \mathcal{Y}_t^i dt + \nabla \mathcal{Q}^i(\mathcal{Y}) dt + \nabla \mathcal{W}_t^i$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- What if two or more conserved quantities???
- Two or more KPZ equations!!!

 $d\mathcal{Y}_t^i = D_i \Delta \mathcal{Y}_t^i dt + \nabla \mathcal{Q}^i(\mathcal{Y}) dt + \nabla \mathcal{W}_t^i$

くしゃ ふゆ チャルチャ キャー ゆうろう

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- What if two or more conserved quantities???
- Two or more KPZ equations!!!

$$d\mathcal{Y}_t^i = D_i \Delta \mathcal{Y}_t^i dt + \nabla \mathcal{Q}^i(\mathcal{Y}) dt + \nabla \mathcal{W}_t^i$$

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history

Generalizing the KPZ equation

- What if two or more conserved quantities???
- Two or more KPZ equations!!!

$$d\mathcal{Y}_t^i = D_i \Delta \mathcal{Y}_t^i dt + \nabla \mathcal{Q}^i(\mathcal{Y}) dt + \nabla \mathcal{W}_t^i$$

Generalizing KPZ equation

- Milton Jara
- Outline
- KPZ equation
- A little of recent history

Generalizing the KPZ equation

- What if two or more conserved quantities???
- Two or more KPZ equations!!!

$$d\mathcal{Y}_t^i = D_i \Delta \mathcal{Y}_t^i dt + \nabla \mathcal{Q}^i(\mathcal{Y}) dt + \nabla \mathcal{W}_t^i$$

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

• Concrete example: Bernardin-Stolz model

- Not-So-Strongly-Stochastically perturbed Hamiltonian chain \rightarrow see the white-board
- Harmonic potential $(V(r) = \frac{1}{2}r^2)$:

$$d\mathcal{Y}_t = \Delta \mathcal{Y}_t dt + d\mathcal{W}_t^1$$
$$d\mathcal{Z}_t = \Delta \mathcal{Z}_t dt + \nabla \mathcal{Y}_t^2 dt + d\mathcal{W}_t^2$$

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Concrete example: Bernardin-Stolz model
- Not-So-Strongly-Stochastically perturbed Hamiltonian chain \rightarrow see the white-board
- Harmonic potential $(V(r) = \frac{1}{2}r^2)$:

 $d\mathcal{Y}_t = \Delta \mathcal{Y}_t dt + d\mathcal{W}_t^1$ $d\mathcal{Z}_t = \Delta \mathcal{Z}_t dt + \nabla \mathcal{Y}_t^2 dt + d\mathcal{W}_t^2$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Milton Jara
- Outline
- KPZ equation
- A little of recent history
- Generalizing the KPZ equation

- Concrete example: Bernardin-Stolz model
- Not-So-Strongly-Stochastically perturbed Hamiltonian chain \rightarrow see the white-board
- Harmonic potential $(V(r) = \frac{1}{2}r^2)$:

$$egin{aligned} d\mathcal{Y}_t &= \Delta \mathcal{Y}_t dt + d\mathcal{W}_t^1 \ d\mathcal{Z}_t &= \Delta \mathcal{Z}_t dt +
abla \mathcal{Y}_t^2 dt + d\mathcal{W}_t^2 \end{aligned}$$

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q (~