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1. Abstract

I consider exclusion processes evolving on Z and starting from the invariant
state. The goal consists in establishing scaling limits of Γt(f ) :=

∫ t
0 f (ηs)ds

for local functions f . I present a method, recently introduced in [3], from
which we derive a local Boltzmann-Gibbs Principle for a class of exclusion
processes. For the occupation time of the origin (i.e. for f (η) := η(0))), this
principle says that Γt(f ) is very well approximated to the density of particles.
As a consequence, the scaling limits of Γt(f ) follow from the scaling limits of
the density of particles. As examples I present the mean-zero exclusion, the
symmetric simple exclusion and the weakly asymmetric simple exclusion. For
the latter under a strong asymmetry, we establish the limit of Γt(f ) in terms
of the solution of the KPZ equation.

2. Lattice gas dynamics

• ηt is a Markov process with space state Ω := {0, 1}Z.
• for x ∈ Z, η(x) = 1 if the site x is occupied, otherwise η(x) = 0.

• Let r : Ω → R be a local function that satisfies:

i) There exists ε0 > 0 such that ε0 < r(η) < ε−1
0 for any η ∈ {0, 1}Z. (Ellipticity)

ii) For any η, ξ such that η(x) = ξ(x) for x 6= 0, 1, then r(η) = r(ξ). (Reversibility)

• The generator is given on local functions f : Ω → R by:

Lf (η) =
∑

x∈Z
r(τxη)(f (ηx,x+1)− f (η))

where

ηx,y(z) =





η(y), z = x

η(x), z = y

η(z), z 6= x, y.

(1)

Invariant states

Let νρ be the Bernoulli product measures of constant parameter ρ ∈ [0, 1]. Under this measure
the occupation variables (η(x))x are independent and

νρ(η : η(x) = 1) = ρ.

We denote by Eρ the expectation with respect to Pρ - the distribution of {ηt : t ≥ 0} in the
space D([0,∞], Ω) starting from νρ.

3. Scaling Limits of the density of particles

• Hydrodynamic Limit
For each configuration η we denote by πn(η; du) the empirical measure:

πn(η; du) =
1

n

∑

x∈Z
η(x)δx/n

and πn
t (η, du) := πn(ηt, du).

Under a diffusive scaling of time tn2, the hydrodynamic limit (LLN) was obtained by [2].

• Equilibrium fluctuations:
The density fluctuation field acts on functions G ∈ S(R) as

Yn
t (G) :=

1√
n

∑

x∈Z
G

(x

n

)
{ηtn2(x)− ρ}. (2)

It was proved by [1] that {Yn
t ; t ∈ [0, T ]} converges in distribution with respect to the

Skorohod topology of D([0, T ],S ′(R)) to the stationary solution of the Ornstein-Uhlenbeck
equation

dYt = D(ρ)∆Ytdt +
√

2D(ρ)ρ(1− ρ)∇dBt, (3)

where Bt is a S ′(R)-valued Brownian motion and D(ρ) is the diffusion coefficient.

This means that the trajectories of the limit field Yt are in C([0, T ],S ′(R)) and that Y0 is
a white noise of variance ρ(1 − ρ) - namely if for any G ∈ S(R), the real-valued random
variable Y0(G) has a normal distribution of mean zero and variance ρ(1− ρ)‖G‖2.

Now, fix a stationary solution {Yt; t ∈ [0, T ]} of (3).
For x ∈ R, let iε(x) : y 7→ ε−11(0,1]((y − x)ε−1).

Theorem 1: For each ε ∈ (0, 1), let {Zε
t ; t ∈ [0, T ]} be defined as

Zε
t =

∫ t

0

Ys(iε)ds.

Then, the process {Zε
t ; t ∈ [0, T ]} converges in distribution with respect to the

uniform topology of C([0, T ],R), as ε → 0, to a fractional Brownian motion
{Zt; t ∈ [0, T ]} of Hurst exponent H = 3/4.

4. Additive functionals

Our goal consists in obtaining functional limit theorems for observables of the process
{ηt; t ≥ 0}. The occupation time of a site x ∈ Z is defined as the integral

∫ t

0 ηs(x)ds.
More generally, for f : Ω → R a local function, if for β ∈ [0, 1], ϕf(β) =

∫
fdνβ, then:

Theorem 2: The process {Γn
t (f ); t ∈ [0, T ]} defined as

Γn
t (f ) =

1

n3/2

∫ tn2

0

(
f (ηs)− ϕf(ρ)

)
ds (5)

converges in distribution with respect to the uniform topology of C([0, T ],R) to
{ϕ′f(ρ)Zt; t ∈ [0, T ]}, where {Zt; t ∈ [0, T ]} is the same as above.

5. Strategy of the proof

Theorem 3: Local Boltzmann-Gibbs principle. Let
f : Ω → R be a local function, such that supp(f ) ⊆ {1, ..., k} and ϕf(ρ) = 0. There
exists c = c(f, ρ) such that

i) if ϕ′f(ρ) 6= 0, then for any t ≥ 0 and any ` ≥ k:

Eρ

[( ∫ t

0

{
f (ηs)− ϕ′f(ρ)

(
η`

s − ρ
)}

ds
)2]

≤ c
(
t` +

t2

`2

)
,

ii) if ϕ′f(ρ) = 0, then for any t ≥ 0 and any ` ≥ k:

Eρ

[( ∫ t

0

{
f (ηs)−

ϕ′′f(ρ)

2

((
η`

s − ρ
)2 − ρ(1− ρ)

`

)}
ds

)2]
≤ c

(
t(log `)2 +

t2

`3

)

where η` := 1
`

∑`
x=1 η(x).

The proof of last result is divided into four steps that rely on the Kipnis-Varadhan inequality
(see [5]) and the spectral gap inequality (see [6]):

1. Firstly, we compare the additive functional associated to f with the additive functional
associated to ψf(`) := Eρ[f |

∑`
x=1 η(x)], using the:

Lemma 1: One-block estimate. Let f : Ω → R be a local func-
tion such that ϕf(ρ) = 0. Then, there exists c = c(f, ρ) such that for any ` ≥ k and
any t ≥ 0:

Eρ

[( ∫ t

0

{f (ηs)− ψf(`; ηs)}ds
)2]

≤ ct`2Var(f ; νρ).

2. Secondly, we compare the additive functional associated to ψf(`) with the additive func-
tional associated to ψf(2`), using the:

Lemma 2: Renormalization step. Let f : Ω → R be a local
function such that ϕf(ρ) = 0. There exists c = c(f, ρ) such that for any ` ≥ k and
any t ≥ 0:

Eρ

[( ∫ t

0

{ψf(`; ηs)− ψf(2`; ηs)}ds
)2]

≤
{

ct`, if ϕ′f(ρ) 6= 0,

ct, if ϕ′f(ρ) = 0.

3. Thirdly, we compare the additive functional associated to ψf(k) with the additive func-
tional associated to ψf(2

mk), using the renormalization step m times.

Lemma 3: Two-blocks estimate. Let f : Ω → R be a local
function such that ϕf(ρ) = 0. Then, there exists c = c(f, ρ) such that for any ` ≥ k
and any t ≥ 0:

Eρ

[( ∫ t

0

ψf(k; ηs)− ψf(`; ηs)ds
)2]

≤
{

ct`, if ϕ′f(ρ) 6= 0,

ct(log `)2, if ϕ′f(ρ) = 0.

4. Finally, we replace ψf(`) by the corresponding function of η` using the following:

Proposition 1: Equivalence of Ensembles. Let f : Ω →
R be a local function. Then there exists a constant c = c(f, ρ) such that for any
` ≥ k:

∫ (
ψf(`, η)− ϕ′f(ρ)

(
η` − ρ

)− ϕ′′f(ρ)

2

((
η`

s − ρ
)2 − ρ(1− ρ)

`

))2

dνρ ≤ c

`3
.

6. Examples

1-Mean-Zero Exclusion
Initially one can have a certain number of particles, as for example:

After an exponential time of parameter 1, a particle at x jumps to x + y with probability
p(y), but to respect the exclusion rule, particles can only jump to empty sites. So, this jump
is allowed:

But, this jump is forbidden:

The microscopic dynamics:

Let p : Z \ {0} → [0, 1] be a probability measure, such that:

1. p(·) has finite range, that is, there exists M > 0 such that p(z) = 0 whenever |z| > M ;
2. p(·) is irreducible, i.e. Z = span{z ∈ Z; p(z) > 0};
3. p(·) has mean zero:

∑
z∈Z zp(z) = 0.

Example: p(1) = 2/3, p(−2) = 1/3 and p(z) = 0 if z 6= −2, 1.

We define the Markov process {ηex
t ; t ≥ 0} whose generator acts over local functions

f : Ω → R as

Lexf (η) =
∑

x,y∈Z
p(y)η(x)(1− η(x + y))(f (ηx,x+y)− f (η)),

with p(·) as above and ηx,x+y as in (1).

The measures {νρ; ρ ∈ [0, 1]} are invariant, but they are not necessarily reversible
(that is true if and only if p(·) is symmetric). The mean-zero, non-symmetric exclusion process
is a diffusive and non-reversible system.

We can define the density fluctuation field {Yn
t ; t ∈ [0, T ]} as in (2) and we have that:

Proposition 2: The process {Yn
t ; t ∈ [0, T ]} converges in distribution with

respect to the Skorohod topology of D([0, T ],S ′(R)) to the stationary solution of the
Ornstein-Uhlenbeck equation

dYt = D(ρ)∆Ytdt +
√

2D(ρ)ρ(1− ρ)(ρ)∇dBt,

where D(ρ) is the diffusion coefficient.

The results presented above allow us to get the scaling limits of additive functionals as in
Theorem 2.

2-Symmetric simple exclusion

Let p be such that p(1) = p(−1) = 1/2. The measures {νρ; ρ ∈ [0, 1]} are invariant.

Proposition 3: The process {Yn
t ; t ∈ [0, T ]} converges in distribution with

respect to the Skorohod topology of D([0, T ],S ′(R)) to the stationary solution of the
Ornstein-Uhlenbeck equation

dYt =
1

2
∆Ytdt +

√
ρ(1− ρ)∇dBt.

The results presented above allow us to get the scaling limits of additive functionals as in
Theorem 2.

3-The weakly asymmetric simple exclusion

Let pn(1) = 1
2 + an

2 , pn(−1) = 1
2− an

2 and pn(z) = 0 if z 6= −1, 1. The measures {νρ; ρ ∈ [0, 1]}
are invariant. If an := 1

n, then we have that

Proposition 4: The process {Yn
t ; t ∈ [0, T ]} converges in distribution with

respect to the Skorohod topology of D([0, T ],S ′(R)) to the stationary solution of the
Ornstein-Uhlenbeck equation

dYt =
1

2
∆Ytdt + (1− 2ρ)∇Ytdt +

√
ρ(1− ρ)∇dBt.

In this case the Ornstein-Uhlenbeck process has a drift, nevertheless one can get the same
result as in Theorem 2.

4-The weakly asymmetric simple exclusion, the KPZ scaling

If ρ = 1/2, then the limit field is the same as in the symmetric simple exclusion (so a weak
asymmetry does not have influence!), see [4]. In this case the ”correct” strength asymme-
try is an = 1/

√
n. In this case we have

Proposition 5: The process {Yn
t ; t ∈ [0, T ]} converges in distribution with

respect to the Skorohod topology of D([0, T ];S ′(R)) to the stationary solution of the
stochastic Burgers equation

dYt =
1

2
∆Ytdt +

(∇Yt

)2
dt +

√
ρ(1− ρ)∇dBt. (7)

Theorem 4: Let {Yt; t ∈ [0, T ]} the stationary solution of the stochas-

tic Burgers equation above. For ε > 0, let Zε
t =

∫ t

0 Ys(iε)ds. Then there exists
{Zt; t ∈ [0, T ]} such that {Zε

t ; t ∈ [0, T ]} converges in distribution with respect to
the uniform topology of C([0, T ];R), as ε → 0, to {Zt; t ∈ [0, T ]}.

And as a consequence we have that

Theorem 5: Let f : Ω → R be a local function such that ϕf(1/2) = 0. Then,
{Γn

t (f ); t ∈ [0, T ]} as defined in (5) converges in distribution with respect to the
uniform topology of C([0, T ];R) to {ϕ′f(1/2)Zt; t ∈ [0, T ]}, where Zt is the same as
in Theorem 4.

5-Symmetric simple exclusion/Asymmetric simple exclusion

Let f be a local function. Then

� if ϕf(ρ) = 0, ϕ′f(ρ) 6= 0, then Var(Γt(f ); νρ) ≤ t3/2(t4/3, ρ = 1/2; t, ρ 6= 1/2),

With the results presented above we can get the correct upper bound in the symmetric
case. Our method does not give the correct upper bound in the asymmetric case.

� if ϕf(ρ) = ϕ′f(ρ) = 0, ϕ′′f(ρ) 6= 0, then Var(Γt(f ); νρ) ≤ t log(t)(t),

With the results presented above we can get the upper bound t(log(t))2 in the symmetric
case. Our method does not give the correct upper bound in the asymmetric case.

� if ϕf(ρ) = ϕ′f(ρ) = ϕ′′f(ρ) = 0, ϕ′′′f (ρ) 6= 0, then Var(Γt(f ); νρ) ≤ t.

With the results presented above we can get the correct upper bound in both cases, see
also [7].
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[3 ] Gonçalves, P. and Jara, M. (2011): Universality of KPZ equation, available online at
arXiv:1003.4478.
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