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Fourier’s law
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Qt
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t

: integrated current of energy/particles during time t.
Fourier’s law (energy) / Fick’s law (particles) :
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Statistics of Q
t

• cumulants hQn

t

i
c

• generating function log
⌦
e

�Q
t

↵

• large deviation function Pro[Q
t

' qt] ⇠ e

�tF(q)

Non-trivial even at equilibrium :

Qt

T
⇢

T
⇢

Qt
T
⇢

From fluctuation-dissipation, we expect
⌦
Q

2

t

↵
c

t

/ 1

L

How do the hQn

t

i
c

behave ?
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Di↵usive systems

Di↵usive systems (symmetric exclusion processes, etc. )
obey Fourier’s law

⇢b⇢a

Open geometry :

1

t

log
⌦
e

�Q
t

↵
' 1

L

F(⇢
a

, ⇢
b

, �)

All cumulants decay in 1/L :

hQn

t

i
t

/ 1

L

Bodineau, Derrida (2004)

Ring geometry :

log
⌦
e

�Q
t

↵

t

' ↵�2

L

+
1

L

2

F(⇢, �)

Higher cumulants in 1/L2

Appert, Derrida,
Lecomte, van Wijland (2008)
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Mechanical models

1D momentum-conserving models have an anomalous Fourier’s law

Ta Tb

Hard particle gas :

hQ
t

i
t

/ 1

L

2/3

Anharmonic chain (Fermi-
Pasta-Ulam ’�’) :

hQ
t

i
t

/ 1

L

⇠3/5

) Anomalous conduction with two di↵erent regimes
Delfini, Lepri, Livi, Politi, van Beijeren, Spohn...



Anomalous

current

fluctuations at a

phase transition

Introduction

Fourier’s law

Di↵usive systems

Mechanical models

ABC model

Phase transition

Current statistics

Critical regime

Conclusion

Mechanical models

1D momentum-conserving models have an anomalous Fourier’s law

Ta Tb

Hard particle gas :

hQ
t

i
t

/ 1

L

2/3

Ta Tb

Anharmonic chain (Fermi-
Pasta-Ulam ’�’) :

hQ
t

i
t

/ 1

L

⇠3/5

) Anomalous conduction with two di↵erent regimes
Delfini, Lepri, Livi, Politi, van Beijeren, Spohn...



Anomalous

current

fluctuations at a

phase transition

Introduction

Fourier’s law

Di↵usive systems

Mechanical models

ABC model

Phase transition

Current statistics

Critical regime

Conclusion

Mechanical models

For the HPG, this behavior extends to the cumulants :
Brunet Derrida G. (2010)

Ta Tb

Open geometry : similar decay

hQn

t

i
t

/ 1

L

2/3

for n  4

Ring geometry :
⌦
Q

2

t

↵
c

t

/ 1p
L

,

⌦
Q

4

t

↵
c

t

/
p
L

Higher cumulants seem to grow
faster with L



Anomalous

current

fluctuations at a

phase transition

Introduction

Fourier’s law

Di↵usive systems

Mechanical models

ABC model

Phase transition

Current statistics

Critical regime

Conclusion

Mechanical models

For the HPG, this behavior extends to the cumulants :
Brunet Derrida G. (2010)

Ta Tb

Open geometry : similar decay
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T

Ring geometry :
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In this talk : the ABC model

q < 1

AB
q
�
1

BA

BC
q
�
1

CB

CA
q
�
1

AC

• When q = e

��/L : phase transition at � = �⇤(ra, rb, rc)

• Anomalous current fluctuations around �⇤ :

hQ
a

(t)i
t

=
J

L

+
corr.

L

3/2
,

hQn

a

(t)i
c

t

/ L

n�5/2
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Phase diagram (on a ring)

ra = 1

rb = 1

rc = 1

2nd
order

* *

*
* : first order

• Transition can be first or second-order, depending on r

a

, r
b

, r
c

• If it is second-order, then it occurs at

�⇤ =
2⇡p

1 � 2
P

r

2

i

.

• �⇤ is unknown otherwise
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The second-order transition

• The ABC model obeys di↵usive dynamics :

Pro[site k is of type a] ' ⇢
a

�
k/L, t/L2

�
= ⇢

a

(x , ⌧)

(
@⌧⇢

a

= �@
x

j

a

(conservation)

j

a

= �@
x

⇢
a

+ �⇢
a

(⇢
c

� ⇢
b

) (biased Fick’s law)

• the constant profiles ⇢
a

(x , ⌧) = r

a

are stable for � < �⇤
) homogeneous / disordered phase

• They become unstable for � � �⇤ : the new stable profiles are
modulated in space
) modulated / ordered phase
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The second-order transition

� < �⇤

ra

rb
rc

=)

� � �⇤

p
� � �⇤

=)
⇢̄a(x)

⇢̄b(x)

⇢̄c(x)

� � �⇤
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First cumulant of the current

0 1 2

0

0.2

0.4

0.6

0.8

�/�⇤

L t
hQ

A
(
t)

i
L = 80

L = 160

L = 320

L = 640

hydro.
rA = rC = 1/4

rB = 1/2
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Second cumulant

1 2

0

3/8

1

�/�⇤

L t
hQ

2 A
(
t)

i c
L = 80

L = 160

L = 320

fluc. hydro.

rA = rC = 1/4

rB = 1/2
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Critical regime

• The first Fourier mode of ⇢
a

becomes unstable as � " �⇤

• Assume that, for � ' �⇤, this mode, R
a

, varies slowly and is
larger than the others :

⇢
a

(x , ⌧) = r

a

+ (R
a

(⌧)e2i⇡x + cc.) + o(R
a

)

• The hydrodynamics equations j
a

= �@
x

⇢
a

+ �⇢
a

(⇢
c

� ⇢
b

) give
the e↵ective dynamics of R

a

:

dR

a

d⌧
= 4⇡2


� � 2⇤

�2

|R
a

|2
�
R

a

with

� =
� � �⇤

�⇤
� = 1 � 2

X

a

r

2

a

⇤ =
X

a

r

2

a

� 2
X

a

r

3

a
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Critical regime

• The first Fourier mode of ⇢
a
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• Assume that, for � ' �⇤, this mode, R
a

, varies slowly and is
larger than the others :

⇢
a

(x , ⌧) = r

a

+ (R
a

(⌧)e2i⇡x + cc.) + o(R
a

)

• The hydrodynamics equations j
a
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x

⇢
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+ �⇢
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� ⇢
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:

dR
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� � 2⇤
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�
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� � �⇤
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⇤ =
X
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a

� 2
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Fluctuating hydrodynamics

• Fluctuations of Q
t

arise from stochastic corrections to the
hydrodynamics :

j

a

= �@
x

⇢
a

+ �⇢
a

(⇢
c

� ⇢
b

) +
⌘
a

(x , ⌧)p
L

• ⌘
a

(x , t) : white noise h⌘
a

(x , ⌧)⌘
b

(x 0, ⌧ 0)i = �
ab

�(x � x

0)�(⌧ � ⌧ 0)

with �
ab

=

(
2⇢

a

(1 � ⇢
a

) if a = b

�2⇢
a

⇢
b

otherwise.
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Fluctuating critical regime

When adding the stochastic corrections,

j

a

= �@
x

⇢
a

+ �⇢
a

(⇢
c

� ⇢
b

) +
⌘
a

(x , ⌧)p
L

the dynamics of R
a

get an added complex white noise

dR

a

d⌧
= 4⇡2


� � 2⇤

�2

|R
a

|2
�
R

a

+
⌫
a

(⌧)p
L

with

h⌫
a

(⌧)⌫⇤
a

(⌧ 0)i = 24⇡2

r

2

a

r

b

r

c

�
�(⌧ � ⌧ 0)
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Fluctuating critical regime

• Rescaling :

R

a

=
1

L

1/4
f (⌧̄) with ⌧̄ =

⌧p
L

) f (⌧̄) di↵uses in a quartic potential :

df

d ⌧̄
= 4⇡2

✓
�̄ � 2⇤

�2

|f |2
◆
f + ⌫(⌧̄) with �̄ =

p
L

� � �⇤
�⇤

) Critical regime for |� � �⇤| ⇠ 1/
p
L :

•
the first Fourier mode fluctuates in 1/L1/4

(the others in 1/
p
L)

•
these fluctuations are on a slow time scale ⌧̄ / t/L5/2
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Current in the critical regime

Q

a

(t) = L

Z
t/L2

0

d⌧


�r

a

(r
c

� r

b

) +
2�p
L

r

b

� r

c

r

a

|f (⌧̄)|2 + (noise)

�

hQ
a

(t)i
t

' �

L

r

a

(r
c

� r

b

) +
2�

L

3/2

r

b

� r

c

r

a

C

1

(�̄)

hQn

a

(t)i
c

t

' 1

L

5/2�n


2�(r

b

� r

c

)

r

a

�
n

C

n

(�̄)

•
C

n

(�̄) is an n-point correlations integral of |f (⌧̄)|2 :

C

n

(�̄) = lim
⌧̄!1

1

⌧̄

Z ⌧̄

0

d ⌧̄
1

..d ⌧̄
n

⌦
|f (⌧̄

1

)..f (⌧̄
n

)|2
↵

(only C

1

=
⌦
|f |2

↵
has an analytical expression)
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Rescaling : first cumulant

�3 0 3

�0.5

0

�̄

L
3

/
2

t
(
hQ

A
(
t)

i�
hQ

A
(
t)

i h
y
d
ro

.)

L = 80

L = 160

L = 320

prediction

0 1 2

0

0.2

0.4

0.6

0.8

�/�⇤

L t
hQ

A
(
t)

i
L = 80

L = 160

L = 320

L = 640

hydro.
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Rescaling : second cumulant

�3 0 3

�0.5

�0.4

�0.3

�0.2

�0.1

0

�̄

�
L t

� hQ
2 A
(
t)

i c
�

hQ
2 A
(
t)

i(n
o
rm

.)
c

�
L = 80

L = 160

L = 320

1 2

0

3/8

1

�/�⇤

L t
hQ

2 A
(
t)

i c
L = 80

L = 160

L = 320

prédiction
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Conclusion

� 6= �⇤ � = �⇤

⇤ 6= 0 ⇤ = 0

Time scale t/L2 t/L5/2 t/L8/3

Cumulants
hQn

t

i
c

t

/ 1

L

hQn

t

i
c

t

/ L

n�5/2 hQn

t

i
c

t

/ L

4(n�2)/3

Correlations h⇢(x)⇢(y)i
c

/ 1

L

h⇢(x)⇢(y)i
c

/ 1p
L

h⇢(x)⇢(y)i
c

/ 1

L

1/3
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Why a phase transition ?

q < 1

AB
q
�
1

BA

BC
q
�
1

CB

CA
q
�
1

AC

• For r
a

= r

b

= r

c

= 1/3, there is detailed balance with energy

E =
L�1X

i=1

LX

j=i+1

[C
i

B

j

+A

i

C

j

+B

i

A

j

] A

i

=

(
1 if i is of type A

0 otherwise

Evans (M.) Kafri Koduvely Mukamel (1998)

) e↵ective interactions are long-ranged

• For generic r

a

, r
b

, r
c

, non-equilibrium steady state
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Tricritical regime

• First mode evolution equation

dR

a

d⌧
= 4⇡2


� � 2⇤

�2

|R
a

|2
�
R

a

+
⌫
a

(⌧)p
L

• ⇤ =
P

r

2

a

� 2
P

r

3

a

vanishes on the tricritical line :

⇢
⇤ � 0 ) second-order transition
⇤ < 0 ) first-order transition

• Going to the next order yields

dR

a

d⌧
= 4⇡2


� � |R

a

|4

r

2

a

�

�
R

a

+
⌫
a

(⌧)p
L
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Scalings and current fluctuations

• Di↵erent scaling for R
a

:

R

a

=
1

L

1/6
g(⌧̃) with ⌧̃ =

⌧

L

2/3

) Larger fluctuations on a slower time scale

• Faster growth of the cumulants :

hQ
a

(t)i
t

' �

L

r

a

(r
c

� r

b

) +
2�

L

4/3

r

b

� r

c

r

a

D

1

(�̄)

hQn

a

(t)i
c

t

' L

4(n�2)/3


2�(r

b

� r

c

)

r

a

�
n

D

n

(�̄)
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