Introduction Phase transition Current statistic Critical regime

Anomalous current fluctuations at a phase transition IPS Workshop / Villa Finaly

A. Gerschenfeld & B. Derrida

Laboratoire de Physique Statistique École Normale Supérieure (Paris)

August 29, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Fourier's law

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

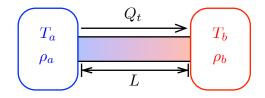
Introduction

Anomalous current fluctuations at a

phase transition

Fourier's law

- Diffusive systems Mechanical mode ABC model Phase transitio
- Critical regime
- Conclusion



 Q_t : integrated current of energy/particles during time t. Fourier's law (energy) / Fick's law (particles) :

$$rac{\langle Q_t
angle}{t} \propto rac{1}{L}$$

Introduction

Fourier's law

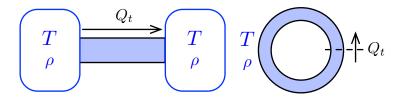
- Diffusive systems Mechanical models ABC model Phase transition
- Critical rogima
- Conclusion

Statistics of Q_t

イロト 不得 トイヨト イヨト

- cumulants $\langle Q_t^n \rangle_c$
- generating function $\log \langle e^{\lambda Q_t} \rangle$
- large deviation function $\operatorname{Pro}[Q_t \simeq qt] \sim e^{-t\mathcal{F}(q)}$

Non-trivial even at equilibrium :



From fluctuation-dissipation, we expect

$$\frac{\left\langle Q_t^2 \right\rangle_c}{t} \propto \frac{1}{L}$$

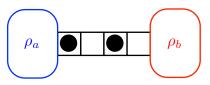
How do the $\langle Q_t^n \rangle_c$ behave?

Introduction Fourier's law Diffusive systems Mechanical models ABC model Phase transition Current statistics Critical regime

Diffusive systems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Diffusive systems (symmetric exclusion processes, etc.) obey Fourier's law



Open geometry :

$$rac{1}{t}\log\left\langle e^{\lambda Q_{t}}
ight
angle \simeqrac{1}{L}\mathcal{F}(
ho_{a},
ho_{b},\lambda)$$

All cumulants decay in 1/L:

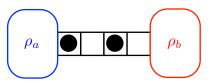
$$rac{\langle Q_t^n
angle}{t} \propto rac{1}{L}$$

Bodineau, Derrida (2004)

Diffusive systems

Diffusive systems

Diffusive systems (symmetric exclusion processes, etc.) obey Fourier's law



Open geometry :

$$rac{1}{t}\log\left\langle e^{\lambda Q_{t}}
ight
angle \simeqrac{1}{L}\mathcal{F}(
ho_{a},
ho_{b},\lambda)$$

All cumulants decay in 1/L:

$$rac{\langle Q_t^n
angle}{t} \propto rac{1}{L}$$

Bodineau, Derrida (2004)

 $\frac{\log \left\langle e^{\lambda Q_t} \right\rangle}{t} \simeq \frac{\alpha \lambda^2}{L} + \frac{1}{L^2} \mathcal{F}(\rho, \lambda)$

Higher cumulants in $1/L^2$

Appert, Derrida, Lecomte, van Wijland (2008)

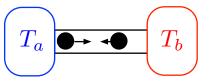
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fourier's law Diffusive systems Mechanical models ABC model Phase transition Current statistics Critical regime Conclusion

Mechanical models

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

1D momentum-conserving models have an anomalous Fourier's law



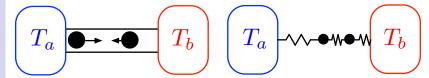
Hard particle gas :

$$rac{\langle Q_t
angle}{t} \propto rac{1}{L^{2/3}}$$

Mechanical models

Mechanical models

1D momentum-conserving models have an anomalous Fourier's law



Hard particle gas :

$$rac{\langle Q_t
angle}{t} \propto rac{1}{L^{2/3}}$$

Anharmonic chain (Fermi-Pasta-Ulam ' β ') :

$$rac{\langle Q_t
angle}{t} \propto rac{1}{L^{\sim 3/5}}$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

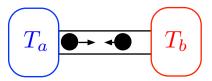
э

⇒ Anomalous conduction with two different regimes Delfini, Lepri, Livi, Politi, van Beijeren, Spohn...

Introduction Fourier's law Diffusive systems Mechanical models ABC model Phase transition Current statistics Critical regime Conclusion

Mechanical models

For the HPG, this behavior extends to the cumulants : Brunet Derrida G. (2010)



Open geometry : similar decay

$$rac{\langle Q_t^n
angle}{t} \propto rac{1}{L^{2/3}}$$

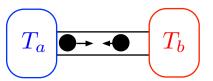
for $n \leq 4$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Introduction Fourier's law Diffusive systems Mechanical models ABC model Phase transition Current statistics Critical regime Conclusion

Mechanical models

For the HPG, this behavior extends to the cumulants : Brunet Derrida G. (2010)



Open geometry : similar decay

$$rac{\langle Q_t^n
angle}{t} \propto rac{1}{L^{2/3}}$$

for $n \leq 4$

Ring geometry :

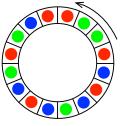
$$rac{\left\langle Q_t^2
ight
angle_c}{t} \propto rac{1}{\sqrt{L}}$$
 , $rac{\left\langle Q_t^4
ight
angle_c}{t} \propto \sqrt{L}$

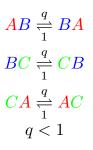
Higher cumulants seem to grow faster with L

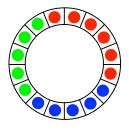
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction Fourier's law Diffusive systems Mechanical models ABC model Phase transition Current statistics Critical regime

In this talk : the ABC model

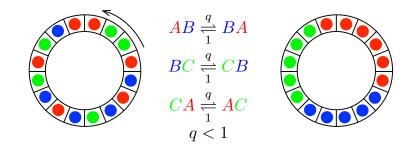






Introduction Fourier's law Diffusive systems Mechanical models ABC model Phase transition Current statistics Critical regime Conclusion

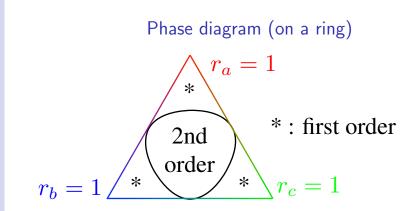
In this talk : the ABC model



- When $q = e^{-\beta/L}$: phase transition at $\beta = \beta_*(r_a, r_b, r_c)$
- Anomalous current fluctuations around β_* :

$$\frac{\langle Q_a(t)\rangle}{t} = \frac{J}{L} + \frac{\text{corr.}}{L^{3/2}} , \frac{\langle Q_a^n(t)\rangle_c}{t} \propto L^{n-5/2}$$

(日) (四) (日) (日) (日)



- Transition can be first or second-order, depending on r_a, r_b, r_c
- If it is second-order, then it occurs at

$$\beta_* = \frac{2\pi}{\sqrt{1 - 2\sum r_i^2}}.$$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

• β_* is unknown otherwise

Anomalous current fluctuations at a

phase transition

Phase diagram

Introduction

Phase transition Phase diagram

2nd order

Current statistics

Critical regime

Conclusion

The second-order transition

• The ABC model obeys diffusive dynamics :

 $\operatorname{Pro}[\text{site } k \text{ is of type } a] \simeq \rho_a \left(k/L, t/L^2 \right) = \rho_a(x, \tau)$

 $\begin{cases} \partial_{\tau} \rho_{a} = -\partial_{x} j_{a} & \text{(conservation)} \\ j_{a} = -\partial_{x} \rho_{a} + \beta \rho_{a} (\rho_{c} - \rho_{b}) & \text{(biased Fick's law)} \end{cases}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Introduction

Phase transition Phase diagram

2nd order

Current statistics

Critical regime

Conclusion

The second-order transition

• The ABC model obeys diffusive dynamics :

Pro[site k is of type a] $\simeq \rho_a \left(k/L, t/L^2 \right) = \rho_a(x, \tau)$

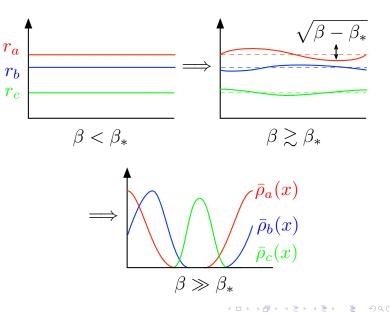
 $\begin{cases} \partial_{\tau} \rho_{a} = -\partial_{x} j_{a} & \text{(conservation)} \\ j_{a} = -\partial_{x} \rho_{a} + \beta \rho_{a} (\rho_{c} - \rho_{b}) & \text{(biased Fick's law)} \end{cases}$

- the constant profiles ρ_a(x, τ) = r_a are stable for β < β_{*} ⇒ homogeneous / disordered phase
- They become unstable for β ≥ β_{*} : the new stable profiles are modulated in space
 ⇒ modulated / ordered phase

Introduction

- Phase transition Phase diagram 2nd order
- Current statistics
- Critical regime
- Conclusion

The second-order transition

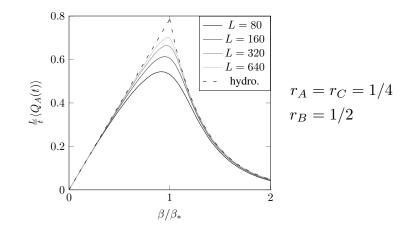


Introduction

Phase transition

Current statistics First cumulant Second cumulant Critical regime Conclusion

First cumulant of the current

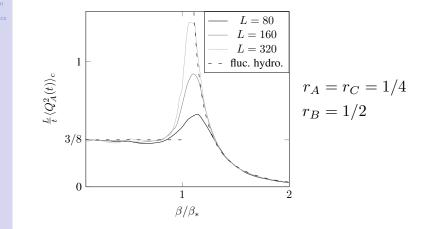


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Second cumulant

Second cumulant

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙



Introduction

Phase transition

Current statistics

Critical regime

Mode coupling

Fluctuating hydrodynami

Current

Conclusion

Critical regime

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The first Fourier mode of ρ_a becomes unstable as $\beta \uparrow \beta_*$
- Assume that, for $\beta \simeq \beta_*$, this mode, R_a , varies slowly and is larger than the others :

$$\rho_a(x,\tau) = r_a + (R_a(\tau)e^{2i\pi x} + cc.) + o(R_a)$$

Introduction

Phase transition

Current statistics

Critical regime

Mode coupling

Fluctuating hydrodynami

Current

Rescaling

Conclusion

Critical regime

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- The first Fourier mode of ρ_a becomes unstable as $\beta \uparrow \beta_*$
- Assume that, for $\beta \simeq \beta_*$, this mode, R_a , varies slowly and is larger than the others :

$$\rho_a(x,\tau) = r_a + (R_a(\tau)e^{2i\pi x} + cc.) + o(R_a)$$

The hydrodynamics equations j_a = −∂_xρ_a + βρ_a(ρ_c − ρ_b) give the effective dynamics of R_a :

$$\frac{dR_{a}}{d\tau} = 4\pi^{2} \left[\gamma - \frac{2\Lambda}{\Delta^{2}} |R_{a}|^{2} \right] R_{a}$$

with

$$\gamma = \frac{\beta - \beta_*}{\beta_*} \qquad \Delta = 1 - 2\sum_a r_a^2 \qquad \Lambda = \sum_a r_a^2 - 2\sum_a r_a^3$$

Introduction Phase transiti

Current statistics

Critical regime

Mode coupling

Fluctuating hydrodynamics

Fluctuation

Current

Constructor

Fluctuating hydrodynamics

• Fluctuations of Q_t arise from stochastic corrections to the hydrodynamics :

$$j_{a} = -\partial_{x}\rho_{a} + \beta\rho_{a}(\rho_{c} - \rho_{b}) + \frac{\eta_{a}(x,\tau)}{\sqrt{L}}$$

• $\eta_a(x,t)$: white noise $\langle \eta_a(x,\tau)\eta_b(x',\tau')\rangle = \sigma_{ab}\delta(x-x')\delta(\tau-\tau')$

with
$$\sigma_{ab} = \begin{cases} 2\rho_a(1-\rho_a) \text{ if } a = b \\ -2\rho_a\rho_b \text{ otherwise.} \end{cases}$$

Introduction Phase transitio Current statisti Critical regime

Fluctuating

Fluctuations

Current

0

Fluctuating critical regime

When adding the stochastic corrections,

$$j_{a} = -\partial_{x}\rho_{a} + \beta\rho_{a}(\rho_{c} - \rho_{b}) + \frac{\eta_{a}(x,\tau)}{\sqrt{L}}$$

the dynamics of R_a get an added complex white noise

$$\frac{dR_a}{d\tau} = 4\pi^2 \left[\gamma - \frac{2\Lambda}{\Delta^2} |R_a|^2 \right] R_a + \frac{\nu_a(\tau)}{\sqrt{L}}$$

with

$$\langle \nu_{a}(\tau)\nu_{a}^{*}(\tau')\rangle = \frac{24\pi^{2}r_{a}^{2}r_{b}r_{c}}{\Delta}\delta(\tau-\tau')$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Current statistics

Critical regime

Mode coupling

hydrodynamic

Fluctuations

Current

Conclusion

Fluctuating critical regime

• Rescaling :

$$R_{a}=rac{1}{L^{1/4}}f(ar{ au})$$
 with $ar{ au}=rac{ au}{\sqrt{L}}$

 $\Rightarrow f(\bar{\tau})$ diffuses in a quartic potential :

$$\frac{df}{d\bar{\tau}} = 4\pi^2 \left(\bar{\gamma} - \frac{2\Lambda}{\Delta^2} |f|^2 \right) f + \nu(\bar{\tau}) \qquad \text{with } \bar{\gamma} = \sqrt{L} \frac{\beta - \beta_*}{\beta_*}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \Rightarrow Critical regime for $|\beta - \beta_*| \sim 1/\sqrt{L}$:

- the first Fourier mode fluctuates in $1/L^{1/4}$ (the others in $1/\sqrt{L}$)
- these fluctuations are on a slow time scale $\bar{\tau} \propto t/L^{5/2}$

Introduction

Current statistics

Critical regime

Mode coupling

Fluctuating

Fluctuation

Current

Conclusion

Current in the critical regime

$$Q_a(t) = L \int_0^{t/L^2} d\tau \left[\beta r_a(r_c - r_b) + \frac{2\beta}{\sqrt{L}} \frac{r_b - r_c}{r_a} |f(\bar{\tau})|^2 + (noise) \right]$$

$$\frac{\langle Q_a(t)\rangle}{t} \simeq \frac{\beta}{L} r_a(r_c - r_b) + \frac{2\beta}{L^{3/2}} \frac{r_b - r_c}{r_a} C_1(\bar{\gamma})$$
$$\frac{\langle Q_a^n(t)\rangle_c}{t} \simeq \frac{1}{L^{5/2-n}} \left[\frac{2\beta(r_b - r_c)}{r_a}\right]^n C_n(\bar{\gamma})$$

• $C_n(\bar{\gamma})$ is an *n*-point correlations integral of $|f(\bar{\tau})|^2$:

$$C_n(\bar{\gamma}) = \lim_{\bar{\tau} \to \infty} \frac{1}{\bar{\tau}} \int_0^{\bar{\tau}} d\bar{\tau}_1 ... d\bar{\tau}_n \left\langle |f(\bar{\tau}_1) ... f(\bar{\tau}_n)|^2 \right\rangle$$

(only $\mathcal{C}_1 = \left< |f|^2 \right>$ has an analytical expression)

Introduction

Phase transition

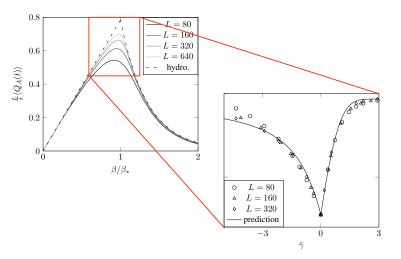
Current statistics

Critical regime

Mode coupling

- Fluctuating
- inyurouynan
- Current
- Rescalings
- Conclusion

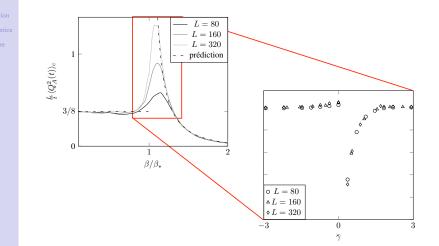
Rescaling : first cumulant



◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Rescalings

Rescaling : second cumulant



◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Conclusion

$$\beta \neq \beta_{*} \qquad \beta = \beta_{*}$$

$$\Lambda \neq 0 \qquad \Lambda = 0$$
Time scale
$$t/L^{2} \qquad t/L^{5/2} \qquad t/L^{8/3}$$
Cumulants
$$\frac{\langle Q_{t}^{n} \rangle_{c}}{t} \propto \frac{1}{L} \qquad \frac{\langle Q_{t}^{n} \rangle_{c}}{t} \propto L^{n-5/2} \qquad \frac{\langle Q_{t}^{n} \rangle_{c}}{t} \propto L^{4(n-2)/3}$$
Correlations
$$\langle \rho(x)\rho(y) \rangle_{c} \propto \frac{1}{L} \qquad \langle \rho(x)\rho(y) \rangle_{c} \propto \frac{1}{\sqrt{L}} \qquad \langle \rho(x)\rho(y) \rangle_{c} \propto \frac{1}{L^{1/3}}$$

Anomalous current fluctuations at a

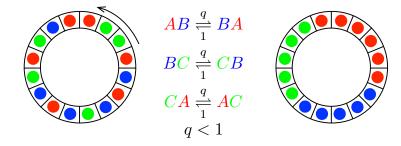
phase transition

Concl

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Introduction Phase transition Current statisti Critical regime Conclusion

Why a phase transition?



• For $r_a = r_b = r_c = 1/3$, there is detailed balance with energy

$$E = \sum_{i=1}^{L-1} \sum_{j=i+1}^{L} [C_i B_j + A_i C_j + B_i A_j] \qquad A_i = \begin{cases} 1 \text{ if } i \text{ is of type } A \\ 0 \text{ otherwise} \end{cases}$$

Evans (M.) Kafri Koduvely Mukamel (1998)

- \Rightarrow effective interactions are long-ranged
 - For generic r_a, r_b, r_c , non-equilibrium steady state

Tricritical regime

First mode evolution equation

$$\frac{dR_{a}}{d\tau} = 4\pi^{2} \left[\gamma - \frac{2\Lambda}{\Delta^{2}} |R_{a}|^{2} \right] R_{a} + \frac{\nu_{a}(\tau)}{\sqrt{L}}$$

• $\Lambda = \sum r_a^2 - 2 \sum r_a^3$ vanishes on the tricritical line :

 $\left\{ \begin{array}{l} \Lambda \geq 0 \Rightarrow \text{second-order transition} \\ \Lambda < 0 \Rightarrow \text{first-order transition} \end{array} \right.$

Going to the next order yields

$$\frac{dR_{a}}{d\tau} = 4\pi^{2} \left[\gamma - \frac{|R_{a}|^{4}}{r_{a}^{2}\Delta} \right] R_{a} + \frac{\nu_{a}(\tau)}{\sqrt{L}}$$

Anomalous current fluctuations at a phase transition

Phase transition Current statistic

Conclusion

Introduction Phase transition Current statistic Critical regime Conclusion

Scalings and current fluctuations

• Different scaling for R_a :

$$R_{a} = rac{1}{L^{1/6}}g(ilde{ au})$$
 with $ilde{ au} = rac{ au}{L^{2/3}}$

 \Rightarrow Larger fluctuations on a slower time scale

• Faster growth of the cumulants :

$$\frac{\langle Q_{a}(t)\rangle}{t} \simeq \frac{\beta}{L} r_{a}(r_{c}-r_{b}) + \frac{2\beta}{L^{4/3}} \frac{r_{b}-r_{c}}{r_{a}} D_{1}(\bar{\gamma})$$
$$\frac{\langle Q_{a}^{n}(t)\rangle_{c}}{t} \simeq L^{4(n-2)/3} \left[\frac{2\beta(r_{b}-r_{c})}{r_{a}}\right]^{n} D_{n}(\bar{\gamma})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ