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A. Gandolfi (Università di Firenze) RCR and inequalities Villa Finaly 2012 2 / 23



Part I

Usual stuff
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Gibbs distributions on a finite set

graphG = (Λ,B),
Λ finite set, B ⊆ P(Λ),

Ω = FΛ, F insieme finito,

P is Gibbs for the interaction φ : ∪b∈BΩb → R
if P(ω) = 1

Z e
∑

b∈B φ(ωb).
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Ising model

F = {−1, 1}, B ⊆ B(2) = {b ∈ B, |b| = 2},
P = µJ(ω) = 1

Z e
∑

b={i,j}∈B Jωiωj , J ∈ R.

FK or Random Cluster representation

original work [Fortuin e Kasteleyn (1972)], version of [Edwards and
Sokal (1988)]:

consider η ∈ H = {0, 1}B
and a joint distribution Q su Ω× H, with p ∈ [0, 1]

Qp(ω, η) = 1
Z p

η1
(1− p)η

0Iω∼η
where Iω∼η indicates that ∀{i , j} ∈ B, η{i ,j} = 1⇒

ωi = ωj in the ferromagnetic J ≥ 0
ωi = −ωj in the antiferromagnetic J ≤ 0

and Z is a normalizing factor.
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Marginals of FK-RC Representation∑
η Qp(ω, η) = µJ(ω) if p = 1− e−2J

ν̄(η) =
∑

ω Qp(ω, η) = 1
Z p

η0
(1− p)η

1
2C(η)

where C(η) = |{site clusters determined by active bonds b : ηb = 1}|

Correlation and dependence

FK-RC Representation can be used to bound spin-spin correlation by
random cluster percolation:
Corr(ωi , ωj) = ν̄(i ↔ j) = ν̄(i is connected to j using active bonds )

In essence Random Cluster connectivity measures dependence.
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Part II

Novelties
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Generalized RCR

Idea

Rewrite the FK-RCR of the Ising model
Qp(ω, η) = 1

Z p
η1

(1− p)η
0Iω∼η = 1

Z νp(η)
∏

b∈B Iωb∈ηb

where
η ∈ H =

∏
b∈B(P(Ωb))

and νp is a probability on H.

Generalized RCR

ν is a B-RCR of P if it is a probability on H and
P(ω) =

∑
η

1
Z ν(η)

∏
b∈B Iωb∈ηb .

In the FK RCR for Ising: ν = νp.
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Remarks on the generalized RCR

Elementary properties

Given P on a finite Λ there exists at least one B such that there is a
B-RCR of P;

given P and B there might be no, one or many B-RCR’s of P;

Say that the RCR is Bernoulli iff ν is a product measure.
Theorem: P has a Bernoulli B-RCR ⇐⇒ there exists φ such that P is
Gibbs in (Λ,B) with interaction φ.

Active hyperbonds in the RCR and marginal

One can still define the marginal ν̄ of ν on H (but attention: ν is
Bernoulli).
Also, hyperbond b ∈ B is inactive in η if ηb = Ωb,
otherwise b is active.

A. Gandolfi (Università di Firenze) RCR and inequalities Villa Finaly 2012 9 / 23



Remarks on the generalized RCR

Elementary properties

Given P on a finite Λ there exists at least one B such that there is a
B-RCR of P;

given P and B there might be no, one or many B-RCR’s of P;

Say that the RCR is Bernoulli iff ν is a product measure.
Theorem: P has a Bernoulli B-RCR ⇐⇒ there exists φ such that P is
Gibbs in (Λ,B) with interaction φ.

Active hyperbonds in the RCR and marginal

One can still define the marginal ν̄ of ν on H (but attention: ν is
Bernoulli).
Also, hyperbond b ∈ B is inactive in η if ηb = Ωb,
otherwise b is active.
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Inutility of the generalized RCR

Unfortunately, connection by active hyper bonds is scarcely related to spin
dependence:

it might be ν̄(ΛA ↔ ΛB) = 0 and still A and B dependent under P;

it might be ν̄(i ↔ j) > 0 and still ωi and ωj independent under P
(even for ν Bernoulli);

only result left is Corr(ωi , ωj) ≤ ν̄(i ↔ j) =
ν̄(i is connected to j using active hyper bonds ).
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A. Gandolfi (Università di Firenze) RCR and inequalities Villa Finaly 2012 10 / 23



Negative dependence

Restrict to F = {−1, 1}.

Negative association NA

NA: A,B ↑, if the supports of A and B are disjoint,
i.e. ∃Λ1,Λ2 ⊆ Λ,Λ1 ∩ Λ2 = ∅,A ∈ ΩΛ1 ,B ∈ ΩΛ2 ,
then P(A ∩ B) ≤ P(A)P(B)

NA is disccused in Pemantle (1991);
an important sufficient condition is in Borcea, Branden and Liggett
(2008)
which in invariant under the simple exclusion process
showing that the simple exclusion is NA
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BK and R properties

Here is a stronger property than NA.

BK and R properties

For two events A and B let

A�B = {ω ∈ Ω| there exist Λ1(ω),Λ2(ω) ⊆ Λ,

Λ1(ω) ∩ Λ2(ω) = ∅, ω|Λ1(ω) ⊆ A, ω|Λ2(ω) ⊆ B}

Increasing event A ↑ with respect to semiorder in Ω:
ω ∈ A, ω′ ≥ ω → ω′ ∈ A

BK: for all A,B ↑,P(A�B) ≤ P(A)P(B)

R (Reimer): for all A,B,P(A�B) ≤ P(A)P(B)
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Known results

van den Berg, Kesten (1985): P Bernoulli is BK.

Reimer (1994-2000): P Bernoulli is R.

Berg-Jonasson 2011: the uniform k out of n Uk,n is BK.
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Foldings

Reimer uses the foldings of a probability. Let F = {−1, 1} for semplicity.
Then the folding is obtained by taking two configurations ω, ω′, fixing the
region M where they agree and have value α = αM and letting the
remaining part fluctuate randomly (subject to the constraint that
configurations disagree).
In more formal terms:

note

WK ,α = {(ω, ω′) ∈ Ω× Ω|
ω|K = ω′|K = α, ω|K c = −ω′|K c = ω̄′|K c},

with K ⊆ Λ, α ∈ ΩK is a partition of Ω× Ω.

the folding K , α of P is defined as P̃K ,α( ) = P × P( |WK ,α).

Another expression is P̃K ,α(ωK c ) = 1
Z P(αωK c )P(αω̄K c )
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Examples

The folding of a Gibbs distribution on (B) is still Gibbs on (B) with
doubled and symmetrized interactions.

If K c is even the folding of Uk,n is U|K c |/2,|K c |.
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A general result

Theorem ([van den Berg, G. , PTRF (2012) to appear]). Given P and
two events A and B. If A�∗B is the event that A and B are realized
using certain disjoint sets, and for each folding there is a symmetric
RCR such that the above sets are not connected by active
hyperbonds, then P(A�∗B) ≤ P(A)P(B).

Foldings can be defined for more than two valued variables, and the
theorem still holds

Formally

Given P, with RCR νK ,α for the folding P̃K ,α, A,B and γ, if for every
ω ∈ A�γB and every K , α, there is (M,N) ∈ γ(A,B, ω) such that
(*) M ∩ K c and N ∩ K c are not connected by active hyperbonds in
(Λ,B(K c)η) for every η ∼ ω|K c

then P(A�γB) ≤ P(A)P(B).
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1 - Independence

Suppose that A and B are based on two disjoint sets (like ωi and ωj),
then A�∗B = A ∩ B;
if for each folding there is a symmetric RCR which does not connect
the two sets, then P(A ∩ B) = P(A�∗B) ≤ P(A)P(B)
but the same happens for A and Bc

hence A and B are independent.

Generalized RCR and folding together allow to recover the idea that RCR
connectivity measures dependence.
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A graphical condition for the BK property

Let F = {−1, 1}.
If A ↑ and B ↑ are increasing, then they are identified by sets ΛA such
that ωΛA

≡ 1

then it would be sufficient to have or each folding

all b’s of size 2;
and symmetric RCR’s
concentrated on antiferromagnetic bonds

One can then fix a distribution P and look for the RCR’s with the
above properties.
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2 - BK property of Curie-Weiss antiferromagnet

Antiferromagnetic Curie-Weiss model

It is the antiferromagnetic Ising model (J ≤ 0) on the complete graph
B = B(2) = {b ∈ B, |b| = 2} [Kac (1968)]

A new RCR for the antiferromagnetic Curie-Weiss

As an Ising model, the Curie-Weiss model has a Bernoulli RCR, not
useful for BK property

There is a new symmetric RCR concentrated on isolated
antiferromagnetic bonds

hence the antiferromagnetic Curie-Weiss is BK.

In the limit for the temperature T → 0 one gets all the limits k uniform
out of n.

A. Gandolfi (Università di Firenze) RCR and inequalities Villa Finaly 2012 19 / 23



2 - BK property of Curie-Weiss antiferromagnet

Antiferromagnetic Curie-Weiss model

It is the antiferromagnetic Ising model (J ≤ 0) on the complete graph
B = B(2) = {b ∈ B, |b| = 2} [Kac (1968)]

A new RCR for the antiferromagnetic Curie-Weiss

As an Ising model, the Curie-Weiss model has a Bernoulli RCR, not
useful for BK property

There is a new symmetric RCR concentrated on isolated
antiferromagnetic bonds

hence the antiferromagnetic Curie-Weiss is BK.

In the limit for the temperature T → 0 one gets all the limits k uniform
out of n.
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3 - Open problem for simple exclusion

One could wonder if the simple exclusion process is also BK (besides
NA)
it would be sufficient to show that each folding of the distribution (at
time t or ∞)
has a symmetric RCR concentrated on isolated antiferromagnetic
bonds

unfortunately, such property is not strongly preserved (i.e. by an
exchange)
so this an open problem.
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A. Gandolfi (Università di Firenze) RCR and inequalities Villa Finaly 2012 20 / 23



3 - Open problem for simple exclusion

One could wonder if the simple exclusion process is also BK (besides
NA)
it would be sufficient to show that each folding of the distribution (at
time t or ∞)
has a symmetric RCR concentrated on isolated antiferromagnetic
bonds

unfortunately, such property is not strongly preserved (i.e. by an
exchange)
so this an open problem.

A. Gandolfi (Università di Firenze) RCR and inequalities Villa Finaly 2012 20 / 23



3 - Open problem for simple exclusion

One could wonder if the simple exclusion process is also BK (besides
NA)
it would be sufficient to show that each folding of the distribution (at
time t or ∞)
has a symmetric RCR concentrated on isolated antiferromagnetic
bonds

unfortunately, such property is not strongly preserved (i.e. by an
exchange)
so this an open problem.
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4 - Cluster disjoint realizations

Our starting point was actually the following problem:
take a configuration ω ∈ {−1, 1}Λ of the Ising model and divide it
into clusters
then use the clusters to recognize A and B
form the event A�clB
the sets ΛA and ΛB only touch with opposite signs

In the standard RCR of the Ising model only ferromagnetic bonds are
used
hence the main theorem applies:

P(A�clB) ≤ P(A)P(B)
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Repeated foldings and FKG theorem

Repeated foldings

P̃K ,α is a distribution on ΩK c , so one can consider his foldings
K2 ⊂ K c , α2 ∈ ΩK c\K2

and so o.

One gets a tree of foldings
although the main result applies to just one step, a weaker result like
FKG applies to repeated steps
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5 - A RCR proof of FKG

Here is a (sketch) of a proof of FKG theorem using generalized RCR.

If P is FKG, the so is every folding P̃K ,α

It is easy to prove FKG theorem in the leaves of the tree of foldings

Going backwards P is positively associated.
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