Generalized random cluster representation and correlation and BK inequalities

Alberto Gandolfi
Università di Firenze

in collaboration with J. van den Berg
Villa Finaly 2012

Outline

Usual stuff

(1) Gibbs distributions
(2) Ising model
(3) FK representation

Novelties

(1) Generalized random cluster representation RCR
(2) BK property
(3) Foldings
(c) A general result

Consequencies
© Independence
(2) BK property (in particular of antiferromagnetic Curie-Weiss)
(3) Open problem for simple exclusion
© Cluster disjoint realizations

- An FK proof of FKG

Outline

Usual stuff

(1) Gibbs distributions
(2) Ising model
(3) FK representation

Novelties

(1) Generalized random cluster representation RCR
(2) BK property
(3) Foldings
(9) A general result
(1) Independence
(2) BK property (in particular of antiferromagnetic Curie-Weiss)
(3) Open problem for simple exclusion
(1) Cluster disjoint realizations
(0) An FK proof of FKG

Outline

Usual stuff

(1) Gibbs distributions
(2) Ising model
(3) FK representation

Novelties

(1) Generalized random cluster representation RCR
(2) BK property
(3) Foldings
(3) A general result

Consequencies

(1) Independence
(2) BK property (in particular of antiferromagnetic Curie-Weiss)
(3) Open problem for simple exclusion
(9) Cluster disjoint realizations
(3) An FK proof of FKG

Part I

Usual stuff

Gibbs distributions on a finite set

- graph $G=(\Lambda, \mathcal{B})$,
Λ finite set, $\mathcal{B} \subseteq \mathcal{P}(\Lambda)$,
- $\Omega=F^{\wedge}, F$ insieme finito,

Gibbs distributions on a finite set

- graph $G=(\Lambda, \mathcal{B})$, Λ finite set, $\mathcal{B} \subseteq \mathcal{P}(\Lambda)$,
- $\Omega=F^{\wedge}, F$ insieme finito,

Gibbs distributions on a finite set

- graph $G=(\Lambda, \mathcal{B})$,
Λ finite set, $\mathcal{B} \subseteq \mathcal{P}(\Lambda)$,
- $\Omega=F^{\wedge}, F$ insieme finito,
- P is Gibbs for the interaction $\phi: \cup_{b \in \mathcal{B}} \Omega_{b} \rightarrow \mathbb{R}$

Gibbs distributions on a finite set

- graph $G=(\Lambda, \mathcal{B})$,
Λ finite set, $\mathcal{B} \subseteq \mathcal{P}(\Lambda)$,
- $\Omega=F^{\wedge}, F$ insieme finito,
- P is Gibbs for the interaction $\phi: \cup_{b \in \mathcal{B}} \Omega_{b} \rightarrow \mathbb{R}$ if $P(\omega)=\frac{1}{Z} e^{\sum_{b \in \mathcal{B}} \phi\left(\omega_{b}\right)}$.

Ising model

- $F=\{-1,1\}, \mathcal{B} \subseteq \mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}$,
- $P=\mu j(\omega)=\frac{1}{z} e^{\sum b=\{i, j\} \in \mathcal{B} J \omega_{i} \omega_{j}}, J \in \mathbb{R}$.

FK or Random Cluster representation

- original work [Fortuin e Kasteleyn (1972)], version of [Edwards and Sokal (1988)]
- consider $\eta \in H=\{0,1\}^{\mathcal{B}}$
and a joint distribution Q su $\Omega \times H$, with $p \in[0,1]$
$Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{1}}(1-p)^{\eta^{0}} \mathbb{I}_{\omega \sim \eta}$
where $\mathbb{I}_{\omega \sim \eta}$ indicates that $\forall\{i, j\} \in \mathcal{B}, \eta_{\{i, j\}}=1 \Rightarrow$
- $\omega_{i}=\omega_{j}$ in the ferromagnetic $J \geq 0$
- $\omega_{i}=-\omega_{j}$ in the antiferromagnetic $J \leq 0$
and Z is a normalizing factor.

Ising model

- $F=\{-1,1\}, \mathcal{B} \subseteq \mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}$,
- $P=\mu_{J}(\omega)=\frac{1}{Z} e^{\sum_{b=\{i, j\} \in \mathcal{B}} J \omega_{i} \omega_{j}}, J \in \mathbb{R}$.

FK or Random Cluster representation

- original work [Fortuin e Kasteleyn (1972)], version of [Edwards and Sokal (1988)]
- consider $\eta \in H=\{0,1\}^{\mathcal{B}}$
and a joint distribution Q su $\Omega \times H$, with $p \in[0,1]$
$Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{1}}(1-p)^{\eta^{0}} \mathbb{I}_{\omega \sim \eta}$
where $\mathbb{I}_{\omega \sim \eta}$ indicates that $\forall\{i, j\} \in \mathcal{B}, \eta_{\{i, j\}}=1 \Rightarrow$
- $\omega_{i}=\omega_{j}$ in the ferromagnetic $J \geq 0$
- $\omega_{i}=-\omega_{j}$ in the antiferromagnetic $J \leq 0$
and Z is a normalizing factor.

Ising model

- $F=\{-1,1\}, \mathcal{B} \subseteq \mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}$,
- $P=\mu_{J}(\omega)=\frac{1}{Z} e^{\sum_{b=\{i, j\} \in \mathcal{B}} J \omega_{i} \omega_{j}}, J \in \mathbb{R}$.

FK or Random Cluster representation

- original work [Fortuin e Kasteleyn (1972)], version of [Edwards and Sokal (1988)]:

Ising model

- $F=\{-1,1\}, \mathcal{B} \subseteq \mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}$,
- $P=\mu_{J}(\omega)=\frac{1}{Z} e^{\sum_{b=\{i, j\} \in \mathcal{B}} J \omega_{i} \omega_{j}}, J \in \mathbb{R}$.

FK or Random Cluster representation

- original work [Fortuin e Kasteleyn (1972)], version of [Edwards and Sokal (1988)]:
- consider $\eta \in H=\{0,1\}^{\mathcal{B}}$

where

- $\omega_{i}=\omega_{j}$ in the ferromagnetic $J \geq 0$
- $\omega_{i}=-\omega_{j}$ in the antiferromagnetic $J \leq 0$
and Z is a normalizing factor

Ising model

- $F=\{-1,1\}, \mathcal{B} \subseteq \mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}$,
- $P=\mu_{J}(\omega)=\frac{1}{Z} e^{\sum_{b=\{i, j\} \in \mathcal{B}} J \omega_{i} \omega_{j}}, J \in \mathbb{R}$.

FK or Random Cluster representation

- original work [Fortuin e Kasteleyn (1972)], version of [Edwards and Sokal (1988)]:
- consider $\eta \in H=\{0,1\}^{\mathcal{B}}$ and a joint distribution Q su $\Omega \times H$, with $p \in[0,1]$

\square - . . $=-\omega$. in the antiferromagnetic $1<0$

Ising model

- $F=\{-1,1\}, \mathcal{B} \subseteq \mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}$,
- $P=\mu_{J}(\omega)=\frac{1}{Z} e^{\sum_{b=\{i, j\} \in \mathcal{B}} J \omega_{i} \omega_{j}}, J \in \mathbb{R}$.

FK or Random Cluster representation

- original work [Fortuin e Kasteleyn (1972)], version of [Edwards and Sokal (1988)]:
- consider $\eta \in H=\{0,1\}^{\mathcal{B}}$ and a joint distribution Q su $\Omega \times H$, with $p \in[0,1]$

$$
Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{1}}(1-p)^{\eta^{0}} \mathbb{I}_{\omega \sim \eta}
$$

Ising model

- $F=\{-1,1\}, \mathcal{B} \subseteq \mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}$,
- $P=\mu_{J}(\omega)=\frac{1}{Z} e^{\sum_{b=\{i, j\} \in \mathcal{B}} J \omega_{i} \omega_{j}}, J \in \mathbb{R}$.

FK or Random Cluster representation

- original work [Fortuin e Kasteleyn (1972)], version of [Edwards and Sokal (1988)]:
- consider $\eta \in H=\{0,1\}^{\mathcal{B}}$ and a joint distribution Q su $\Omega \times H$, with $p \in[0,1]$
$Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{1}}(1-p)^{\eta^{0}} \mathbb{I}_{\omega \sim \eta}$
where $\mathbb{I}_{\omega \sim \eta}$ indicates that $\forall\{i, j\} \in \mathcal{B}, \eta_{\{i, j\}}=1 \Rightarrow$
and Z is a normalizing factor

Ising model

- $F=\{-1,1\}, \mathcal{B} \subseteq \mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}$,
- $P=\mu_{J}(\omega)=\frac{1}{Z} e^{\sum_{b=\{i, j\} \in \mathcal{B}} J \omega_{i} \omega_{j}}, J \in \mathbb{R}$.

FK or Random Cluster representation

- original work [Fortuin e Kasteleyn (1972)], version of [Edwards and Sokal (1988)]:
- consider $\eta \in H=\{0,1\}^{\mathcal{B}}$ and a joint distribution Q su $\Omega \times H$, with $p \in[0,1]$
$Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{1}}(1-p)^{\eta^{0}} \mathbb{I}_{\omega \sim \eta}$
where $\mathbb{I}_{\omega \sim \eta}$ indicates that $\forall\{i, j\} \in \mathcal{B}, \eta_{\{i, j\}}=1 \Rightarrow$
- $\omega_{i}=\omega_{j}$ in the ferromagnetic $J \geq 0$
and Z is a normalizing factor.

Ising model

- $F=\{-1,1\}, \mathcal{B} \subseteq \mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}$,
- $P=\mu_{J}(\omega)=\frac{1}{Z} e^{\sum_{b=\{i, j\} \in \mathcal{B}} J \omega_{i} \omega_{j}}, J \in \mathbb{R}$.

FK or Random Cluster representation

- original work [Fortuin e Kasteleyn (1972)], version of [Edwards and Sokal (1988)]:
- consider $\eta \in H=\{0,1\}^{\mathcal{B}}$ and a joint distribution Q su $\Omega \times H$, with $p \in[0,1]$
$Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{1}}(1-p)^{\eta^{0}} \mathbb{I}_{\omega \sim \eta}$
where $\mathbb{I}_{\omega \sim \eta}$ indicates that $\forall\{i, j\} \in \mathcal{B}, \eta_{\{i, j\}}=1 \Rightarrow$
- $\omega_{i}=\omega_{j}$ in the ferromagnetic $J \geq 0$
- $\omega_{i}=-\omega_{j}$ in the antiferromagnetic $J \leq 0$
and Z is a normalizing factor.

Marginals of FK-RC Representation

$\sum_{\eta} Q_{p}(\omega, \eta)=\mu_{J}(\omega)$ if $p=1-e^{-2 J}$
$\bar{\nu}(\eta)=\sum_{\omega} Q_{p}(\omega, \eta)=\frac{1}{7} p^{\eta^{0}}(1-p)^{\eta^{1}} 2^{C(\eta)}$
where $\mathcal{C}(\eta)=\mid\left\{\right.$ site clusters determined by active bonds $\left.b: \eta_{b}=1\right\} \mid$

Correlation and dependence

- FK-RC Representation can be used to bound spin-spin correlation by random cluster percolation: $\operatorname{Corr}\left(\omega_{i}, \omega_{j}\right)=\bar{\nu}(i \leftrightarrow j)=\bar{\nu}(i$ is connected to j using active bonds $)$ In essence Random Cluster connectivity measures dependence.

Marginals of FK-RC Representation

$$
\begin{aligned}
& \sum_{\eta} Q_{p}(\omega, \eta)=\mu_{J}(\omega) \text { if } p=1-e^{-2 J} \\
& \bar{\nu}(\eta)=\sum_{\omega} Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{0}}(1-p)^{\eta^{1}} 2^{\mathcal{C}(\eta)}
\end{aligned}
$$

where $\mathcal{C}(\eta)=\mid\{$ site clusters determined by active bonds b

Correlation and dependence

- FK-RC Representation can be used to bound spin-spin correlation by random cluster percolation: $\operatorname{Corr}\left(\omega_{i}, \omega_{j}\right)=\bar{\nu}(i \leftrightarrow j)=\bar{\nu}(i$ is connected to j using active bonds $)$ In essence Random Cluster connectivity measures dependence.

Marginals of FK-RC Representation

$\sum_{\eta} Q_{p}(\omega, \eta)=\mu_{J}(\omega)$ if $p=1-e^{-2 J}$
$\bar{\nu}(\eta)=\sum_{\omega} Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{0}}(1-p)^{\eta^{1}} 2^{\mathcal{C}}(\eta)$
where $\mathcal{C}(\eta)=\mid\left\{\right.$ site clusters determined by active bonds $\left.b: \eta_{b}=1\right\} \mid$

Correlation and dependence

- FK-RC Representation can be used to bound spin-spin correlation by random cluster percolation:
essence Random Cluster connectivity measures dependence.

Marginals of FK-RC Representation

$\sum_{\eta} Q_{p}(\omega, \eta)=\mu_{J}(\omega)$ if $p=1-e^{-2 J}$
$\bar{\nu}(\eta)=\sum_{\omega} Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{0}}(1-p)^{\eta^{1}} 2^{\mathcal{C}}(\eta)$
where $\mathcal{C}(\eta)=\mid\left\{\right.$ site clusters determined by active bonds $\left.b: \eta_{b}=1\right\} \mid$

Correlation and dependence

- FK-RC Representation can be used to bound spin-spin correlation by random cluster percolation:
$\operatorname{Corr}\left(\omega_{i}, \omega_{j}\right)=\bar{\nu}(i \leftrightarrow j)=\bar{\nu}(i$ is connected to j using active bonds $)$
In essence Random Cluster connectivity measures dependence.

Marginals of FK-RC Representation

$\sum_{\eta} Q_{p}(\omega, \eta)=\mu_{J}(\omega)$ if $p=1-e^{-2 J}$
$\bar{\nu}(\eta)=\sum_{\omega} Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{0}}(1-p)^{\eta^{1}} 2^{\mathcal{C}}(\eta)$
where $\mathcal{C}(\eta)=\mid\left\{\right.$ site clusters determined by active bonds $\left.b: \eta_{b}=1\right\} \mid$

Correlation and dependence

- FK-RC Representation can be used to bound spin-spin correlation by random cluster percolation:
$\operatorname{Corr}\left(\omega_{i}, \omega_{j}\right)=\bar{\nu}(i \leftrightarrow j)=\bar{\nu}(i$ is connected to j using active bonds $)$
In essence Random Cluster connectivity measures dependence.

Part II

Novelties

Generalized RCR

Idea

- Rewrite the FK-RCR of the Ising model


```
Generalized RCR
```



```
- In the FK RCR for Ising: \(\nu=\nu_{p}\).
```


Generalized RCR

Idea

- Rewrite the FK-RCR of the Ising model
$Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{1}}(1-p)^{\eta^{0}} \mathbb{I}_{\omega \sim \eta}=\frac{1}{Z} \nu_{p}(\eta) \prod_{b \in \mathcal{B}} \mathbb{I}_{\omega_{b} \in \eta_{b}}$

Generalized RCR

- ν is a \mathcal{B}-RCR of P if it is a probability on H and
- In the FK RCR for Ising: $\nu=\nu_{p}$.

Generalized RCR

Idea

- Rewrite the FK-RCR of the Ising model
$Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{1}}(1-p)^{\eta^{0}} \mathbb{I}_{\omega \sim \eta}=\frac{1}{Z} \nu_{p}(\eta) \prod_{b \in \mathcal{B}} \mathbb{I}_{\omega_{b} \in \eta_{b}}$
where
$\eta \in H=\prod_{b \in \mathcal{B}}\left(\mathcal{P}\left(\Omega_{b}\right)\right)$ and ν_{p} is a probability on H.

Generalized RCR

- ν is a \mathcal{B}-RCR of P if it is a probability on H and
- In the FK RCR for Ising: $\nu=\nu_{p}$.

Generalized RCR

Idea

- Rewrite the FK-RCR of the Ising model
$Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{1}}(1-p)^{\eta^{0}} \mathbb{I}_{\omega \sim \eta}=\frac{1}{Z} \nu_{p}(\eta) \prod_{b \in \mathcal{B}} \mathbb{I}_{\omega_{b} \in \eta_{b}}$
where
$\eta \in H=\prod_{b \in \mathcal{B}}\left(\mathcal{P}\left(\Omega_{b}\right)\right)$ and ν_{p} is a probability on H.

Generalized RCR

- ν is a \mathcal{B}-RCR of P if it is a probability on H and

$$
P(\omega)=\sum_{\eta} \frac{1}{Z} \nu(\eta) \prod_{b \in \mathcal{B}} \mathbb{I}_{\omega_{b} \in \eta_{b}}
$$

Generalized RCR

Idea

- Rewrite the FK-RCR of the Ising model
$Q_{p}(\omega, \eta)=\frac{1}{Z} p^{\eta^{1}}(1-p)^{\eta^{0}} \mathbb{I}_{\omega \sim \eta}=\frac{1}{Z} \nu_{p}(\eta) \prod_{b \in \mathcal{B}} \mathbb{I}_{\omega_{b} \in \eta_{b}}$
where
$\eta \in H=\prod_{b \in \mathcal{B}}\left(\mathcal{P}\left(\Omega_{b}\right)\right)$
and ν_{p} is a probability on H.

Generalized RCR

- ν is a \mathcal{B}-RCR of P if it is a probability on H and

$$
P(\omega)=\sum_{\eta} \frac{1}{Z} \nu(\eta) \prod_{b \in \mathcal{B}} \mathbb{I}_{\omega_{b} \in \eta_{b}} .
$$

- In the FK RCR for Ising: $\nu=\nu_{p}$.

Remarks on the generalized RCR

Elementary properties

- Given P on a finite Λ there exists at least one \mathcal{B} such that there is a \mathcal{B}-RCR of P;
- given P and \mathcal{B} there might be no, one or many \mathcal{B}-RCR's of P;
- Say that the RCR is Bernoulli iff ν is a product measure. Theorem: P has a Bernoulli $\mathcal{B}-\mathrm{RCR} \Longleftrightarrow$ there exists ϕ such that P is Gibbs in (Λ, \mathcal{B}) with interaction

Active hyperbonds in the RCR and marginal

 One can still define the marginal $\bar{\nu}$ of ν on H (but attention: ν is Bernoulli). Also, hyperbond $b \in \mathcal{B}$ is inactive in η if $\eta_{b}=\Omega_{b}$ otherwise b is active.
Remarks on the generalized RCR

Elementary properties

- Given P on a finite Λ there exists at least one \mathcal{B} such that there is a \mathcal{B}-RCR of P;
- given P and \mathcal{B} there might be no, one or many \mathcal{B}-RCR's of P;
- Say that the RCR is Bernoulli iff ν is a product measure. Theorem: P has a Bernoulli $\mathcal{B}-\mathrm{RCR} \Longleftrightarrow$ there exists ϕ such that P is Gibbs in (Λ, \mathcal{B}) with interaction

Active hyperbonds in the RCR and marginal

 One can still define the marginal $\bar{\nu}$ of ν on H (but attention: ν is Bernoulli). Also, hyperbond $b \in \mathcal{B}$ is inactive in η if $\eta_{b}=\Omega_{b}$ otherwise b is active.
Remarks on the generalized RCR

Elementary properties

- Given P on a finite Λ there exists at least one \mathcal{B} such that there is a \mathcal{B}-RCR of P;
- given P and \mathcal{B} there might be no, one or many \mathcal{B}-RCR's of P;
- Say that the RCR is Bernoulli iff ν is a product measure. Theorem: P has a Bernoulli \mathcal{B}-RCR \Longleftrightarrow there exists ϕ such that P is Gibbs in (Λ, \mathcal{B}) with interaction ϕ.

Active hyperbonds in the RCR and marginal

\qquad
\square
Also, hyperbond $b \in \mathcal{B}$ is inactive in $\eta_{\text {if }} \eta_{b}=\Omega_{b}$
otherwise b is active.

Remarks on the generalized RCR

Elementary properties

- Given P on a finite Λ there exists at least one \mathcal{B} such that there is a \mathcal{B}-RCR of P;
- given P and \mathcal{B} there might be no, one or many \mathcal{B}-RCR's of P;
- Say that the RCR is Bernoulli iff ν is a product measure. Theorem: P has a Bernoulli \mathcal{B}-RCR \Longleftrightarrow there exists ϕ such that P is Gibbs in (Λ, \mathcal{B}) with interaction ϕ.

Active hyperbonds in the RCR and marginal

One can still define the marginal $\bar{\nu}$ of ν on H (but attention: ν is Bernoulli).
Also, hyperbond $b \in \mathcal{B}$ is inactive in η if $\eta_{b}=\Omega_{b}$, otherwise b is active.

Inutility of the generalized RCR

Unfortunately, connection by active hyper bonds is scarcely related to spin

 dependence:- it might be $\bar{\nu}(i \leftrightarrow j)>0$ and still ω_{i} and ω_{j} independent under P (even for ν Bernoulli);
- only result left is $\operatorname{Corr}\left(\omega_{i}, \omega_{j}\right) \leq \bar{\nu}(i \leftrightarrow j)=$ $\bar{\nu}(i$ is connected to j using active hyper bonds $)$.

Inutility of the generalized RCR

Unfortunately, connection by active hyper bonds is scarcely related to spin dependence:

- it might be $\bar{\nu}\left(\Lambda_{A} \leftrightarrow \Lambda_{B}\right)=0$ and still A and B dependent under P;

Inutility of the generalized RCR

Unfortunately, connection by active hyper bonds is scarcely related to spin dependence:

- it might be $\bar{\nu}\left(\Lambda_{A} \leftrightarrow \Lambda_{B}\right)=0$ and still A and B dependent under P;
- it might be $\bar{\nu}(i \leftrightarrow j)>0$ and still ω_{i} and ω_{j} independent under P (even for ν Bernoulli);
- only result left is $\operatorname{Corr}\left(\omega_{i}, \omega_{j}\right) \leq \bar{\nu}(i \leftrightarrow j)=$
$\bar{\nu}(i$ is connected to j using active hyper bonds $)$.

Inutility of the generalized RCR

Unfortunately, connection by active hyper bonds is scarcely related to spin dependence:

- it might be $\bar{\nu}\left(\Lambda_{A} \leftrightarrow \Lambda_{B}\right)=0$ and still A and B dependent under P;
- it might be $\bar{\nu}(i \leftrightarrow j)>0$ and still ω_{i} and ω_{j} independent under P (even for ν Bernoulli);
- only result left is $\operatorname{Corr}\left(\omega_{i}, \omega_{j}\right) \leq \bar{\nu}(i \leftrightarrow j)=$ $\bar{\nu}(i$ is connected to j using active hyper bonds $)$.

Negative dependence

Restrict to $F=\{-1,1\}$

Negative assoctation NA

- NA: $A, B \uparrow$, if the supports of A and B are disjoint,

then $P(A \cap B) \leq P(A) P(B)$
- NA is disccused in Pemantle (1991);
an important sufficient condition is in Borcea, Branden and Liggett (2008)
which in invariant under the simple exclusion process showing that the simple exclusion is NA

Negative dependence

Restrict to $F=\{-1,1\}$.

Negative association NA

- NA: $A, B \uparrow$, if the supports of A and B are disjoint, i.e. $\exists \Lambda_{1}, \Lambda_{2} \subseteq \Lambda, \Lambda_{1} \cap \Lambda_{2}=\emptyset, A \in \Omega_{\Lambda_{1}}, B \in \Omega_{\Lambda_{2}}$,
- NA is disccused in Pemantle (1991); an important sufficient condition is in E orcea, Branden and Liggett (2008)
which in invariant under the simple exclusion process
showing that the simple exclusion is NA

Negative dependence

Restrict to $F=\{-1,1\}$.

Negative association NA

- NA: $A, B \uparrow$, if the supports of A and B are disjoint, i.e. $\exists \Lambda_{1}, \Lambda_{2} \subseteq \Lambda, \Lambda_{1} \cap \Lambda_{2}=\emptyset, A \in \Omega_{\Lambda_{1}}, B \in \Omega_{\Lambda_{2}}$, then $P(A \cap B) \leq P(A) P(B)$
- NA is disccused in Pemantle (1991); an important sufficient condition is in Borcea, Branden and Liggett (2008) which in invariant under the simple exclusion process showing that the simple exclusion is NA

Negative dependence

Restrict to $F=\{-1,1\}$.

Negative association NA

- NA: $A, B \uparrow$, if the supports of A and B are disjoint, i.e. $\exists \Lambda_{1}, \Lambda_{2} \subseteq \Lambda, \Lambda_{1} \cap \Lambda_{2}=\emptyset, A \in \Omega_{\Lambda_{1}}, B \in \Omega_{\Lambda_{2}}$, then $P(A \cap B) \leq P(A) P(B)$
- NA is disccused in Pemantle (1991); an important sufficient condition is in Borcea, Branden and Liggett (2008)
which in invariant under the simple exclusion process
showing that the simple exclusion is NA

Negative dependence

Restrict to $F=\{-1,1\}$.

Negative association NA

- NA: $A, B \uparrow$, if the supports of A and B are disjoint, i.e. $\exists \Lambda_{1}, \Lambda_{2} \subseteq \Lambda, \Lambda_{1} \cap \Lambda_{2}=\emptyset, A \in \Omega_{\Lambda_{1}}, B \in \Omega_{\Lambda_{2}}$, then $P(A \cap B) \leq P(A) P(B)$
- NA is disccused in Pemantle (1991); an important sufficient condition is in Borcea, Branden and Liggett (2008)
which in invariant under the simple exclusion process

Negative dependence

Restrict to $F=\{-1,1\}$.

Negative association NA

- NA: $A, B \uparrow$, if the supports of A and B are disjoint, i.e. $\exists \Lambda_{1}, \Lambda_{2} \subseteq \Lambda, \Lambda_{1} \cap \Lambda_{2}=\emptyset, A \in \Omega_{\Lambda_{1}}, B \in \Omega_{\Lambda_{2}}$, then $P(A \cap B) \leq P(A) P(B)$
- NA is disccused in Pemantle (1991); an important sufficient condition is in Borcea, Branden and Liggett (2008)
which in invariant under the simple exclusion process showing that the simple exclusion is NA

BK and R properties

Here is a stronger property than NA.

BK and R properties

- For two events A and B let
- Increasing event $A \uparrow$ with respect to semiorder in Ω : $\omega \in A, \omega^{\prime} \geq \omega \rightarrow \omega^{\prime} \in A$
- BK: for all $A, B \uparrow, P(A \square B) \leq P(A) P(B)$
- R (Reimer): for all $A, B, P(A \square B) \leq P(A) P(B)$

BK and R properties

Here is a stronger property than NA.

BK and R properties

- For two events A and B let

$$
\begin{aligned}
A \square B= & \left\{\omega \in \Omega \mid \text { there exist } \Lambda_{1}(\omega), \Lambda_{2}(\omega) \subseteq \Lambda\right. \\
& \left.\Lambda_{1}(\omega) \cap \Lambda_{2}(\omega)=\emptyset,\left.\omega\right|_{\Lambda_{1}(\omega)} \subseteq A,\left.\omega\right|_{\Lambda_{2}(\omega)} \subseteq B\right\}
\end{aligned}
$$

- Increasing event $A \uparrow$ with respect to semiorder in Ω :
- BK: for all $A, B \uparrow, P(A \square B) \leq P(A) P(B)$
- R (Reimer): for all $A, B, P(A \square B) \leq P(A) P(B)$

BK and R properties

Here is a stronger property than NA.

BK and R properties

- For two events A and B let

$$
\begin{aligned}
A \square B= & \left\{\omega \in \Omega \mid \text { there exist } \Lambda_{1}(\omega), \Lambda_{2}(\omega) \subseteq \Lambda\right. \\
& \left.\Lambda_{1}(\omega) \cap \Lambda_{2}(\omega)=\emptyset,\left.\omega\right|_{\Lambda_{1}(\omega)} \subseteq A,\left.\omega\right|_{\Lambda_{2}(\omega)} \subseteq B\right\}
\end{aligned}
$$

- Increasing event $A \uparrow$ with respect to semiorder in Ω :
$\omega \in A, \omega^{\prime} \geq \omega \rightarrow \omega^{\prime} \in A$
- BK: for all $A, B \uparrow, P(A \square B) \leq P(A) P(B)$ - R (Reimer): for all $A, B, P(A \square B) \leq P(A) P(B)$

BK and R properties

Here is a stronger property than NA.

BK and R properties

- For two events A and B let

$$
\begin{aligned}
A \square B= & \left\{\omega \in \Omega \mid \text { there exist } \Lambda_{1}(\omega), \Lambda_{2}(\omega) \subseteq \Lambda\right. \\
& \left.\Lambda_{1}(\omega) \cap \Lambda_{2}(\omega)=\emptyset,\left.\omega\right|_{\Lambda_{1}(\omega)} \subseteq A,\left.\omega\right|_{\Lambda_{2}(\omega)} \subseteq B\right\}
\end{aligned}
$$

- Increasing event $A \uparrow$ with respect to semiorder in Ω :
$\omega \in A, \omega^{\prime} \geq \omega \rightarrow \omega^{\prime} \in A$
- BK: for all $A, B \uparrow, P(A \square B) \leq P(A) P(B)$

BK and R properties

Here is a stronger property than NA.

BK and R properties

- For two events A and B let

$$
\begin{aligned}
A \square B= & \left\{\omega \in \Omega \mid \text { there exist } \Lambda_{1}(\omega), \Lambda_{2}(\omega) \subseteq \Lambda\right. \\
& \left.\Lambda_{1}(\omega) \cap \Lambda_{2}(\omega)=\emptyset,\left.\omega\right|_{\Lambda_{1}(\omega)} \subseteq A,\left.\omega\right|_{\Lambda_{2}(\omega)} \subseteq B\right\}
\end{aligned}
$$

- Increasing event $A \uparrow$ with respect to semiorder in Ω :
$\omega \in A, \omega^{\prime} \geq \omega \rightarrow \omega^{\prime} \in A$
- BK: for all $A, B \uparrow, P(A \square B) \leq P(A) P(B)$
- R (Reimer): for all $A, B, P(A \square B) \leq P(A) P(B)$

Known results

- van den Berg, Kesten (1985): P Bernoulli is BK.
- Reimer (1994-2000): P Bernoulli is R.
- Berg-Jonasson 2011: the uniform k out of $n U_{k, n}$ is $B K$.

Known results

- van den Berg, Kesten (1985): P Bernoulli is BK.
- Reimer (1994-2000): P Bernoulli is R.
- Berg-Jonasson 2011: the uniform k out of $n U_{k, n}$ is $B K$.

Known results

- van den Berg, Kesten (1985): P Bernoulli is BK.
- Reimer (1994-2000): P Bernoulli is R.
- Berg-Jonasson 2011: the uniform k out of $n U_{k, n}$ is $B K$.

Known results

- van den Berg, Kesten (1985): P Bernoulli is BK.
- Reimer (1994-2000): P Bernoulli is R.
- Berg-Jonasson 2011: the uniform k out of $n U_{k, n}$ is BK.

Known results

- van den Berg, Kesten (1985): P Bernoulli is BK.
- Reimer (1994-2000): P Bernoulli is R.
- Berg-Jonasson 2011: the uniform k out of $n U_{k, n}$ is BK.

Foldings

Reimer uses the foldings of a probability. Let $F=\{-1,1\}$ for semplicity. Then the folding is obtained by taking two configurations ω, ω^{\prime}, fixing the region M where they agree and have value $\alpha=\alpha_{M}$ and letting the remaining part fluctuate randomly (subject to the constraint that configurations disagree).
In more formal terms:

- note

$$
\begin{aligned}
W_{K, \alpha}= & \left\{\left(\omega, \omega^{\prime}\right) \in \Omega \times \Omega\right. \\
& \left.\left.\omega\right|_{K}=\left.\omega^{\prime}\right|_{K}=\alpha,\left.\omega\right|_{K^{c}}=-\left.\omega^{\prime}\right|_{K^{c}}=\left.\overline{\omega^{\prime}}\right|_{K^{c}}\right\}
\end{aligned}
$$

with $K \subseteq \Lambda, \alpha \in \Omega_{K}$ is a partition of $\Omega \times \Omega$.

- Another expression is $\tilde{P}^{K}, \alpha\left(\omega_{K^{c}}\right)=\frac{1}{Z} P\left(\alpha \omega_{K^{c}}\right) P\left(\alpha \bar{\omega}_{K^{c}}\right)$

Foldings

Reimer uses the foldings of a probability. Let $F=\{-1,1\}$ for semplicity. Then the folding is obtained by taking two configurations ω, ω^{\prime}, fixing the region M where they agree and have value $\alpha=\alpha_{M}$ and letting the remaining part fluctuate randomly (subject to the constraint that configurations disagree).
In more formal terms:

- note

$$
\begin{aligned}
W_{K, \alpha}= & \left\{\left(\omega, \omega^{\prime}\right) \in \Omega \times \Omega \mid\right. \\
& \left.\left.\omega\right|_{K}=\left.\omega^{\prime}\right|_{K}=\alpha,\left.\omega\right|_{K^{c}}=-\left.\omega^{\prime}\right|_{K^{c}}=\left.\overline{\omega^{\prime}}\right|_{K^{c}}\right\}
\end{aligned}
$$

with $K \subseteq \Lambda, \alpha \in \Omega_{K}$ is a partition of $\Omega \times \Omega$.

- the folding K, α of P is defined as $\tilde{P}^{K, \alpha}(\quad)=P \times P\left(\quad \mid W_{K, \alpha}\right)$.
- Another expression is $P^{K}, \alpha\left(\omega_{K^{c}}\right)=\frac{1}{Z} P\left(\alpha \omega_{K^{c}}\right) P\left(\alpha \bar{\omega}_{K^{c}}\right)$

Foldings

Reimer uses the foldings of a probability. Let $F=\{-1,1\}$ for semplicity. Then the folding is obtained by taking two configurations ω, ω^{\prime}, fixing the region M where they agree and have value $\alpha=\alpha_{M}$ and letting the remaining part fluctuate randomly (subject to the constraint that configurations disagree).
In more formal terms:

- note

$$
\begin{aligned}
W_{K, \alpha}= & \left\{\left(\omega, \omega^{\prime}\right) \in \Omega \times \Omega \mid\right. \\
& \left.\left.\omega\right|_{K}=\left.\omega^{\prime}\right|_{K}=\alpha,\left.\omega\right|_{K^{c}}=-\left.\omega^{\prime}\right|_{K^{c}}=\left.\overline{\omega^{\prime}}\right|_{K^{c}}\right\}
\end{aligned}
$$

with $K \subseteq \Lambda, \alpha \in \Omega_{K}$ is a partition of $\Omega \times \Omega$.

- the folding K, α of P is defined as $\tilde{P}^{K, \alpha}(\quad)=P \times P\left(\quad \mid W_{K, \alpha}\right)$.
- Another expression is $\tilde{P}^{K, \alpha}\left(\omega_{K^{c}}\right)=\frac{1}{Z} P\left(\alpha \omega_{K^{c}}\right) P\left(\alpha \bar{\omega}_{K^{c}}\right)$

Examples

- The folding of a Gibbs distribution on (\mathcal{B}) is still Gibbs on (\mathcal{B}) with doubled and symmetrized interactions.
- If K^{c} is even the folding of $U_{K, n}$ is $U_{\left|K^{c}\right| / 2, \mid K^{c}}$

Examples

- The folding of a Gibbs distribution on (\mathcal{B}) is still Gibbs on (\mathcal{B}) with doubled and symmetrized interactions.
- If K^{c} is even the folding of $U_{k, n}$ is $U_{\left|K^{c}\right| / 2,\left|K^{c}\right|}$.

A general result

- Theorem ([van den Berg, G. , PTRF (2012) to appear]). Given P and two events A and B. If $A \square^{*} B$ is the event that A and B are realized using certain disjoint sets, and for each folding there is a symmetric RCR such that the above sets are not connected by active hyperbonds, then $P\left(A \square^{*} B\right) \leq P(A) P(B)$.

```
Formally
    - Given P, with RCR \nu}\mp@subsup{\nu}{K,\alpha}{}\mathrm{ for the folding P}\mp@subsup{P}{}{K,\alpha},A,B\mathrm{ and }\gamma\mathrm{ , if for every 
    (*) M\cap K}\mp@subsup{K}{}{c}\mathrm{ and }N\cap\mp@subsup{K}{}{c}\mathrm{ are not connected by active hyperbonds in
    (^,\mathcal{B}(\mp@subsup{K}{}{c}\mp@subsup{)}{\eta}{})\mathrm{ for every }\eta~\omega|
    then P(A\square\mp@subsup{\square}{\gamma}{}B)\leqP(A)P(B).
```


A general result

- Theorem ([van den Berg, G. , PTRF (2012) to appear]). Given P and two events A and B. If $A \square^{*} B$ is the event that A and B are realized using certain disjoint sets, and for each folding there is a symmetric RCR such that the above sets are not connected by active hyperbonds, then $P\left(A \square^{*} B\right) \leq P(A) P(B)$.

Foldings can be defined for more than two valued variables, and the theorem still holds

Formally

A general result

- Theorem ([van den Berg, G. , PTRF (2012) to appear]). Given P and two events A and B. If $A \square^{*} B$ is the event that A and B are realized using certain disjoint sets, and for each folding there is a symmetric RCR such that the above sets are not connected by active hyperbonds, then $P\left(A \square^{*} B\right) \leq P(A) P(B)$.

Foldings can be defined for more than two valued variables, and the theorem still holds

Formally

- Given P, with $\mathrm{RCR} \nu_{K, \alpha}$ for the folding $\tilde{P}^{K, \alpha}, A, B$ and γ, if for every $\omega \in A \square_{\gamma} B$ and every K, α, there is $(M, N) \in \gamma(A, B, \omega)$ such that

A general result

- Theorem ([van den Berg, G. , PTRF (2012) to appear]). Given P and two events A and B. If $A \square^{*} B$ is the event that A and B are realized using certain disjoint sets, and for each folding there is a symmetric RCR such that the above sets are not connected by active hyperbonds, then $P\left(A \square^{*} B\right) \leq P(A) P(B)$.

Foldings can be defined for more than two valued variables, and the theorem still holds

Formally

- Given P, with $\mathrm{RCR} \nu_{K, \alpha}$ for the folding $\tilde{P}^{K, \alpha}, A, B$ and γ, if for every $\omega \in A \square_{\gamma} B$ and every K, α, there is $(M, N) \in \gamma(A, B, \omega)$ such that $\left(^{*}\right) M \cap K^{c}$ and $N \cap K^{c}$ are not connected by active hyperbonds in $\left(\Lambda, \mathcal{B}\left(K^{c}\right)_{\eta}\right)$ for every $\left.\eta \sim \omega\right|_{K^{c}}$

A general result

- Theorem ([van den Berg, G. , PTRF (2012) to appear]). Given P and two events A and B. If $A \square^{*} B$ is the event that A and B are realized using certain disjoint sets, and for each folding there is a symmetric RCR such that the above sets are not connected by active hyperbonds, then $P\left(A \square^{*} B\right) \leq P(A) P(B)$.

Foldings can be defined for more than two valued variables, and the theorem still holds

Formally

- Given P, with $\mathrm{RCR} \nu_{K, \alpha}$ for the folding $\tilde{P}^{K, \alpha}, A, B$ and γ, if for every $\omega \in A \square_{\gamma} B$ and every K, α, there is $(M, N) \in \gamma(A, B, \omega)$ such that $\left(^{*}\right) M \cap K^{c}$ and $N \cap K^{c}$ are not connected by active hyperbonds in $\left(\Lambda, \mathcal{B}\left(K^{c}\right)_{\eta}\right)$ for every $\left.\eta \sim \omega\right|_{K^{c}}$ then $P\left(A \square_{\gamma} B\right) \leq P(A) P(B)$.

1 - Independence

- Suppose that A and B are based on two disjoint sets (like ω_{i} and ω_{j}), then $A \square^{*} B=A \cap B$;

```
if for each folding there is a symmetric RCR which does not connect
the two sets, then P(A\capB)=P(A\square*B)\leqP(A)P(B)
but the same happens for }A\mathrm{ and }\mp@subsup{B}{}{C
hence A and B are independent.
```

Generalized RCR and folding together allow to recover the idea that RCR connectivity measures dependence.

1 - Independence

- Suppose that A and B are based on two disjoint sets (like ω_{i} and ω_{j}), then $A \square^{*} B=A \cap B$;
if for each folding there is a symmetric RCR which does not connect the two sets, then $P(A \cap B)=P\left(A \square^{*} B\right) \leq P(A) P(B)$
but the same happens for A and B^{C}
hence A and B are independent.
Generalized RCR and folding together allow to recover the idea that RCR connectivity measures dependence.

1 - Independence

- Suppose that A and B are based on two disjoint sets (like ω_{i} and ω_{j}), then $A \square^{*} B=A \cap B$;
if for each folding there is a symmetric RCR which does not connect the two sets, then $P(A \cap B)=P\left(A \square^{*} B\right) \leq P(A) P(B)$ but the same happens for A and B^{C}
hence A and B are independent.
Generalized RCR and folding together allow to recover the idea that RCR connectivity measures dependence.

1 - Independence

- Suppose that A and B are based on two disjoint sets (like ω_{i} and ω_{j}), then $A \square^{*} B=A \cap B$;
if for each folding there is a symmetric RCR which does not connect the two sets, then $P(A \cap B)=P\left(A \square^{*} B\right) \leq P(A) P(B)$
but the same happens for A and B^{C}
hence A and B are independent.
Generalized RCR and folding together allow to recover the idea that RCR connectivity measures dependence.

1 - Independence

- Suppose that A and B are based on two disjoint sets (like ω_{i} and ω_{j}), then $A \square^{*} B=A \cap B$;
if for each folding there is a symmetric RCR which does not connect the two sets, then $P(A \cap B)=P\left(A \square^{*} B\right) \leq P(A) P(B)$
but the same happens for A and B^{C}
hence A and B are independent.
Generalized RCR and folding together allow to recover the idea that RCR connectivity measures dependence.

A graphical condition for the BK property

Let $F=\{-1,1\}$.

- If $A \uparrow$ and $B \uparrow$ are increasing, then they are identified by sets Λ_{A} such
- then it would be sufficient to have or each folding
- and symmetric RCR's
- concentrated on antiferromagnetic bonds
- One can then fix a distribution P and look for the RCR's with the above properties.

A graphical condition for the BK property

Let $F=\{-1,1\}$.

- If $A \uparrow$ and $B \uparrow$ are increasing, then they are identified by sets Λ_{A} such that $\omega_{\Lambda_{A}} \equiv 1$
- then it would be sufficient to have or each folding
- and symmetric RCR's
- concentrated on antiferro nagnetic bonds
- One can then fix a distribution P and look for the RCR's with the above properties.

A graphical condition for the BK property

Let $F=\{-1,1\}$.

- If $A \uparrow$ and $B \uparrow$ are increasing, then they are identified by sets Λ_{A} such that $\omega_{\Lambda_{A}} \equiv 1$
- then it would be sufficient to have or each folding
- all b's of size 2;
- and symmetric RCR's
- concentrated on antiferromagnetic bonds
- One can then fix a distribution P and look for the RCR's with the above properties.

A graphical condition for the BK property

Let $F=\{-1,1\}$.

- If $A \uparrow$ and $B \uparrow$ are increasing, then they are identified by sets Λ_{A} such that $\omega_{\Lambda_{A}} \equiv 1$
- then it would be sufficient to have or each folding
- all b's of size 2;
- and symmetric RCR's
- concentrated on antiferromagnetic bonds
- One can then fix a distribution P and look for the RCR's with the above properties.

2 - BK property of Curie-Weiss antiferromagnet

Antiferromagnetic Curie-Weiss model

-

t is the antiferromagnetic lsing model $(J \leq 0)$ on the complete graph

A new RCR for the antiferromagnetic Curie-Weiss

\square

- There is a new symmetric RCR concentrated on isolated antiferromagnetic bonds
- hence the antiferromagnetic Curie-Weiss is BK.
\square

2 - BK property of Curie-Weiss antiferromagnet

Antiferromagnetic Curie-Weiss model

- It is the antiferromagnetic Ising model $(J \leq 0)$ on the complete graph $\mathcal{B}=\mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}[\operatorname{Kac}$ (1968)]

A new RCR for the antiferromagnetic Curie-Weiss

useful for BK property

- There is a new symmetric RCR concentrated on isolated antiferromagnetic bonds
- hence the antiferromagnetic Curie-Weiss is BK

2 - BK property of Curie-Weiss antiferromagnet

Antiferromagnetic Curie-Weiss model

- It is the antiferromagnetic Ising model $(J \leq 0)$ on the complete graph $\mathcal{B}=\mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}[\operatorname{Kac}$ (1968)]

A new RCR for the antiferromagnetic Curie-Weiss

- As an Ising model, the Curie-Weiss model has a Bernoulli RCR, not useful for BK property
- There is a new symmetric RCR concentrated on isolated
antiferromagnetic bonds
- hence the antifennomannetic Curie-Weiss is BK

In the limit for the temperature $T \rightarrow 0$ one gets all the limits k uniform out of n.

2 - BK property of Curie-Weiss antiferromagnet

Antiferromagnetic Curie-Weiss model

- It is the antiferromagnetic Ising model $(J \leq 0)$ on the complete graph $\mathcal{B}=\mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}[\operatorname{Kac}$ (1968)]

A new RCR for the antiferromagnetic Curie-Weiss

- As an Ising model, the Curie-Weiss model has a Bernoulli RCR, not useful for BK property
- There is a new symmetric RCR concentrated on isolated antiferromagnetic bonds
- hence the antiferromagnetic Curie-Weiss is BK

In the limit for the temperature $T \rightarrow 0$ one gets all the limits k uniform out of n.

2 - BK property of Curie-Weiss antiferromagnet

Antiferromagnetic Curie-Weiss model

- It is the antiferromagnetic Ising model $(J \leq 0)$ on the complete graph $\mathcal{B}=\mathcal{B}^{(2)}=\{b \in \mathcal{B},|b|=2\}[\operatorname{Kac}$ (1968)]

A new RCR for the antiferromagnetic Curie-Weiss

- As an Ising model, the Curie-Weiss model has a Bernoulli RCR, not useful for BK property
- There is a new symmetric RCR concentrated on isolated antiferromagnetic bonds
- hence the antiferromagnetic Curie-Weiss is BK.

In the limit for the temperature $T \rightarrow 0$ one gets all the limits k uniform out of n.

3 - Open problem for simple exclusion

- One could wonder if the simple exclusion process is also BK (besides NA)
it would be sufficient to show that each folding of the distribution (at has a symmetric RCR concentrated on isolated antiferromagnetic bonds
unfortunately, such property is not strongly preserved (i.e. by an exchange) so this an open problem

3 - Open problem for simple exclusion

- One could wonder if the simple exclusion process is also BK (besides NA)
it would be sufficient to show that each folding of the distribution (at time t or ∞)
has a symmetric RCR concentrated on isolated antiferromagnetic bonds
unfortunately, such property is not strongly preserved (i.e. by an exchange) so this an open problem.

3 - Open problem for simple exclusion

- One could wonder if the simple exclusion process is also BK (besides NA)
it would be sufficient to show that each folding of the distribution (at time t or ∞)
has a symmetric RCR concentrated on isolated antiferromagnetic bonds
unfortunately, such property is not strongly preserved (i.e. by an exchange) so this an open problem.

3 - Open problem for simple exclusion

- One could wonder if the simple exclusion process is also BK (besides NA)
it would be sufficient to show that each folding of the distribution (at time t or ∞)
has a symmetric RCR concentrated on isolated antiferromagnetic bonds
unfortunately, such property is not strongly preserved (i.e. by an exchange)
so this an open problem.

3 - Open problem for simple exclusion

- One could wonder if the simple exclusion process is also BK (besides NA)
it would be sufficient to show that each folding of the distribution (at time t or ∞)
has a symmetric RCR concentrated on isolated antiferromagnetic bonds
unfortunately, such property is not strongly preserved (i.e. by an exchange)
so this an open problem.

4 - Cluster disjoint realizations

- Our starting point was actually the following problem: take a configuration $\omega \in\{-1,1\}^{\wedge}$ of the Ising model and divide it into clusters
then use the clusters to recognize A and B form the event $A \square_{c l} B$ the sets Λ_{A} and Λ_{B} only touch with opposite signs
- In the standard RCR of the Ising model only ferromagnetic bonds are used
hence the main theorem applies:

$$
P\left(A \square_{c l} B\right) \leq P(A) P(B)
$$

4 - Cluster disjoint realizations

- Our starting point was actually the following problem: take a configuration $\omega \in\{-1,1\}^{\wedge}$ of the Ising model and divide it into clusters then use the clusters to recognize A and B
form the event $A \square_{c \mid} B$ the sets Λ_{A} and Λ_{B} only touch with opposite signs
- In the standard RCR of the Ising model only ferromag etic bonds are used
hence the main theorem applies:

$$
P\left(A-B^{\prime}\right) \leq P(A) P(B)
$$

4 - Cluster disjoint realizations

- Our starting point was actually the following problem: take a configuration $\omega \in\{-1,1\}^{\wedge}$ of the Ising model and divide it into clusters then use the clusters to recognize A and B form the event $A \square_{c l} B$
- In the standard RCR of the Ising model only ferromagnetic bonds are used
hence the main theorem applies:

$$
P\left(A \square_{c l} B\right) \leq P(A) P(B)
$$

4 - Cluster disjoint realizations

- Our starting point was actually the following problem: take a configuration $\omega \in\{-1,1\}^{\wedge}$ of the Ising model and divide it into clusters
then use the clusters to recognize A and B form the event $A \square_{c l} B$
the sets Λ_{A} and Λ_{B} only touch with opposite signs
- In the standard RCR of the Ising model only ferromagnetic bonds are used
hence the main theorem applies:
\square

4 - Cluster disjoint realizations

- Our starting point was actually the following problem: take a configuration $\omega \in\{-1,1\}^{\wedge}$ of the Ising model and divide it into clusters
then use the clusters to recognize A and B form the event $A \square_{c l} B$
the sets Λ_{A} and Λ_{B} only touch with opposite signs
- In the standard RCR of the Ising model only ferromagnetic bonds are used
hence the main theorem applies:

$$
P\left(A \square_{c \mid} B\right) \leq P(A) P(B)
$$

4 - Cluster disjoint realizations

- Our starting point was actually the following problem: take a configuration $\omega \in\{-1,1\}^{\wedge}$ of the Ising model and divide it into clusters
then use the clusters to recognize A and B form the event $A \square_{c l} B$
the sets Λ_{A} and Λ_{B} only touch with opposite signs
- In the standard RCR of the Ising model only ferromagnetic bonds are used
hence the main theorem applies:

$$
P\left(A \square_{c l} B\right) \leq P(A) P(B)
$$

Repeated foldings and FKG theorem

Repeated foldings

- $\tilde{P}^{K, \alpha}$ is a distribution on $\Omega_{K^{c}}$, so one can consider his foldings $K_{2} \subset K^{c}, \alpha_{2} \in \Omega_{K^{c} \backslash K_{2}}$ and so o.
although the main result applies to just one step, a weaker result like FKG applies to repeated steps

Repeated foldings and FKG theorem

Repeated foldings

- $\tilde{P}^{K, \alpha}$ is a distribution on $\Omega_{K^{c}}$, so one can consider his foldings $K_{2} \subset K^{c}, \alpha_{2} \in \Omega_{K^{c} \backslash K_{2}}$ and so o.
- One gets a tree of foldings
although the main result applies to just one step, a weaker result like FKG applies to repeated steps

5 - A RCR proof of FKG

- Here is a (sketch) of a proof of FKG theorem using generalized RCR.
- If P is FKG, the so is every folding $\tilde{P} K, \alpha$
- It is easy to prove FKG theorem in the leaves of the tree of foldings
- Going backwards P is positively associated.

5 - A RCR proof of FKG

- Here is a (sketch) of a proof of FKG theorem using generalized RCR.
- If P is FKG, the so is every folding $\tilde{P}^{K, \alpha}$
- It is easy to prove FKG theorem in the leaves of the tree of foldings
- Going backwards P is positively associated.

5 - A RCR proof of FKG

- Here is a (sketch) of a proof of FKG theorem using generalized RCR.
- If P is FKG, the so is every folding $\tilde{P}^{K, \alpha}$
- It is easy to prove FKG theorem in the leaves of the tree of foldings
- Going backwards P is positively associated.

5 - A RCR proof of FKG

- Here is a (sketch) of a proof of FKG theorem using generalized RCR.
- If P is FKG, the so is every folding $\tilde{P}^{K, \alpha}$
- It is easy to prove FKG theorem in the leaves of the tree of foldings
- Going backwards P is positively associated.

