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Weighted Bijections

Finite interval Λ ⊂ Z

σΛ : Λ→ Λ a bijection (permutation)

α > 0 real parameter.

Hamiltonian:
HΛ(σΛ) =

∑
x∈Λ

(x − σΛ(x))2

Specification in Λ: σ : Z→ Z with σ(x) = x for x /∈ Λ

µΛ(σ) =
1

ZΛ
exp(−αHΛ(σ))

where ZΛ is the normalizing constant.
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Thermodynamic limit

Gibbs measure µ as a limit

lim
Λ↗Z

µΛ ?

More dimensions? Other point sets (Poisson process, etc)?

Motivation in Gandolfo-Ruiz-Ueltschi 2007:

Gaussian weights: Feynman-Kac representation of Bose
gas. Toth model.

α is proportional to the temperature of the system.

Model introduced by Feynman (1953), Kikuchi (1954), Kikuchi,
Denman, Schreiber (1960), Fichtner (1991), Betz and Ueltschi
(2008, ’09, ’11).

Our motivation: Biskup Richthammer (talk at EBP 2010).
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Cycle of a bijection σ

sequence of distinct sites (x0, . . . , xn) such that

σ(xi) = xi+1; σ(xn) = x0

σ is identified by {γ : γ is a cycle of σ}.

Problems:

“There should be no long cycles for α large, i.e. when sites are
heavily discouraged from jumping to a neighbor.”

“Cycles should increase in size when α decreases.”

“The main question is whether a transition occurs for some
value αc > 0, below which a fraction of the sites find
themselves in infinitely long cycles. ”
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Ground states

σ′ is a local perturbation of the bijection σ if

{x ∈ Z : σ′(x) 6= σ(x)} is finite

σ is a ground state if for any local perturbation σ′ of σ,

H(σ′)− H(σ) > 0

(computable because the number of differences is finite).

For n ∈ Z let ηn be the bijection

ηn(x) = x + n, x ∈ Z

Lemma: {ηn, n ∈ Z} are all ground states for H.

When n 6= 0 these ground states have cycles of infinite length.
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Reason: In a ground state there cannot be crossings: picture!(
x − η(x)

)2
+
(
y − η(y)

)2
<
(
x − η(y)

)2
+
(
y − η(x)

)2

when x < y and η(x) < η(y).

“Gibbs measures must be perturbations of these ground states.”
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Gibbs formalism

Hamiltonian: For σ bijection and Λ finite:

HΛ(σ) =
∑
x∈Λ

(x − σ(x))2.

Boundary conditions: Let Λ finite, η bijection and define

B(Λ, η) := {σ bijection : σ(x) = η(x), x ∈ Λc}

Specifications: probability measure µΛ,η on B(Λ, η):

µΛ,η(σ) :=
1

ZΛ,η
exp

(
− αHΛ(σ)

)
1{σ ∈ B(Λ, η)},
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Gibbs measures

• µ on {bijections} is a Gibbs measure for the family (µΛ,η) if

µ(σ occurs in Λ | η occurs in Λc) = µΛ,η(σ)

for µ-almost all η and all finite Λ.

• Gα: (convex) set of Gibbs for temperature α.

• Extremal Gibbs characterize Gα.

• Ergodic are Gibbs.
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Flow of a bijection η Define

F +
x (η) :=

∑
y≤x

1{η(y) > x}

F−x (η) :=
∑
y>x

1{η(y) ≤ x}

(Net) Flow: F (η) := F +(η)− F−(η)

• Flow is constant in x . Denote F +(η),F−(η).

• n-Gibbs: Gαn := extremal Gibbs measures with flow n.
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Results of Biskup and Richthammer

For all α > 0,

1. Gibbs measures have finite flow:

If µ ∈ Gα, then µ(F + <∞,F− <∞) = 1.

2. n-Gibbs measures have |n| infinite cycles:

For n ∈ Z, if µ ∈ Gαn , then there are n infinite cycles µ-a.s.

3. For each n there is only one n-Gibbs measure.

4. {extremal Gibbs} = {n-Gibbs}

5. Thermodynamic limit. For all η with flow n

lim
Λ↗Z

µΛ,η exists and is n-Gibbs

.
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Comments on Biskup-Richthammer:

BR also prove non–existence at temperature 0. This relies on
the nonexistence of a uniform probability distribution on an
infinite countable set.

The uniqueness at positive temperature is obtained by a
cutblock argument used in the proof of 2.

The existence at positive temperature is based on a tightness
argument and proving that tightness preserves the flow.
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“Shift” operator

Observation: It suffices to study the 0-Gibbs measure.

Given n ∈ Z, let the shift operator θn : σ 7→ θnσ be defined by

(θnσ)(x) = σ(x) + n

So that θnId = ηn, where Id is the identity.

Lemma.

µ(θn)−1 is n-Gibbs ⇔ µ is 0-Gibbs
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Explicit construction of the 0-Gibbs measure for α large.

Theorem (AFGL)

There exists αc > 0 such that if α > αc :

• Explicit construction of a coupling (σΛ,Λ ⊂ Z), such that

for finite Λ, σΛ ∼ µΛ,Id on B(Λ, Id), the specification on Λ with
identity bondary conditions, and

lim
Λ↗Z

σΛ = σZ a.s.

• The law of σZ is the only 0-Gibbs measure.

• All cycles in ηZ are finite.

• Results export to n-Gibbs using the shift operator θn.
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n = 0: (Non-trivial) Cycles Let k ≥ 2,

• Cycle γ = (x0, . . . , xn, xk+1), x0 = xk+1, σ(xi) = xi+1.

• o(γ) = min{x0, . . . , xn} is the origin of γ.

• |γ| = k + 1 number of distinct sites used by γ.

• The weight of γ

w(γ) = α

k∑
i=0

(xi − xi+1)2

• σ identified with Γ(σ) := { non-trivial disjoint cycles of σ}.

• γ ∼ γ′, compatible if they use disjoint sets of sites.
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Loss network: birth and death of cycles

• Current state: set of cycles Γ = Γ(σ)

• At rate e−w(γ) propose cycle γ. If it is compatible with present
cycles, then γ is born. If not, γ is “lost”.

• Each present cycle dies at rate 1.

• For finite region Λ, finite state Markov process with generator:

LΛf (Γ) =
∑
γ⊂Λ

e−w(γ)1{γ ∼ Γ}
[
f (Γ∪{γ})−f (Γ)

]
+
∑
γ∈Γ

[
f (Γ\{γ})−f (Γ)

]
• Call ΓΛ

t the resulting process and ηΛ
t the process induced on

the set of bijections of Z .

• µΛ,Id is reversible for ηΛ
t . Trivial for finite Λ.
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Stationary version and thermodynamical limit

Theorem. (Fernández, F, Garcia 2001)

If
m(α) :=

∑
γ:o(γ)=0

|γ|e−w(γ) < 1

then:

• A stationary version of the loss network (ηΛ
t , t ∈ R) can be

constructed for all Λ finite or infinite. Call µ the marginal law of
ηt = ηZt .

• For finite Λ the time-marginal law of ηΛ
t is µΛ,Id.

• Spatial limits: Simultaneous coupling of (ηΛ
t , t ∈ R, Λ ⊂ Z)

such that for all x ∈ Z,

ηΛ
t (x)→ ηt (x) almost surely as Λ↗ Z.
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Stationary version and thermodynamical limit

• Consequence: Thermodynamic limit: µΛ,Id → µ weakly.

• µ, the law of ηt , is 0-Gibbs.

• Time limits, coupling from the past: If ζ has finite cycles, then
coupling (η[−t ,0], η

ζ
[−t ,0]) such that for all x,

lim
t→∞

ηζ[−t ,0](x)→ η[−t ,0](x)

almost surely.

• Consequences: 1) ηζt converges weakly to µ.

2) µ is the only invariant measure for ηt
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Sketch of proof

Free process.

• Free birth and death process of cycles (superpositions
allowed).

• The invariant measure for the free process is a product of
Poisson: number of cycles of type γ is Poisson with mean
e−w(γ).

• Stationary construction (time in R) of the free process.

• Space and time limits for the free process are trivial.

• Free process generates random set of space-time cylinders.

18



Graphic construction of the Loss network (exclusion
interaction)

• Works as the free process but cycles incompatible with
present cycles cannot appear.

• Construction coupled to free construction forward in time

Use the free cylinders but erase (loose) those incompatible with
present cylinders. Proceed iteratively.

• Clan of ancestors of a cylinder C: cylinders born in the past
that may influence the birth of C.

• If clan of ancestors born after time 0 is finite, then the
process exists. This happens if m(α) <∞.

• If clan of ancestors is finite, stationary construction ok.
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• This happens if m(α) < 1.

• In this case space and time limits hold exponentially fast.

• Invariant measure for this process in finite Λ is µΛ,Id. This is
the time marginal of ηΛ

t .

• The time marginal of the infinite volume stationary process ηt
is Gibbs.
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A particle system question

• Suppose that m(α) =∞.

• In this case the loss network is not well defined, at least
starting with the empty configuration. The rate of birth of a
cycle with origin at 0 is infinite.

• But the 0-Gibbs measure is “invariant” for this non existent
dynamics (BR).

• Does it exist the stationary dynamics in this case?

Other open questions

• Are there infinite cycles in more than 2 dimensions?
Beltz-Uelchi have arguments supporting this conjecture.

• Can one describe all the ground states 2 or more
dimensions?
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Larger dimensions: d ≥ 2

• No backwards percolation approach works for large α in Zd .
We can construct the (unique) 0-Gibbs state as a gas of
weighted cycles interacting by exclusion.

• Open: to establish the ground states in d ≥ 2.

• Extremal measures? The lemma above no longer holds.

• Other hamiltonians? (x − π(x))p for instance? Construction
works for high α in the same way.
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Construction of µk from µ0

• Finite perturbations of the ground state ηn can be obtained in
terms of perturbations of η0.

• Shift operator: θnσ as the operator

θn σ(x) = σ(x) + n

Notice that (θn)−1 = θ−n.

Let Ln be the dynamics defined by

Lnθ
nσ = θnLσ

Map to a configuration with flow 0, apply the zero dynamics,
map back to the configuration with flow n.
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Lemma. If µ ∈ Gn, then µ is reversible for Ln.

Proof. Configurations σ, σ′.

Denote by Λ = {x ∈ Z : σ′(x) 6= σ(x)}.

θnσ′(x) = θnσ(x) for any x ∈ Λc , therefore

H(θnσ′)− H(θnσ) =
∑
x∈Λ

[x − σ′(x)− n]2 −
∑
x∈Λ

[x − σ(x)− n]2

=
∑
x∈Λ

[x − σ′(x)]2 −
∑
x∈Λ

[x − σ(x)]2

− 2n

[∑
x∈Λ

σ′(x)−
∑
x∈Λ

σ(x)

]
= H(σ′)− H(σ)

because σ′(Λ) = σ(Λ) and
∑

x∈Λ σ
′(x) =

∑
x∈Λ σ(x).
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