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Weighted Bijections

Finite interval A C Z
opa - N — A a bijection (permutation)

a > 0 real parameter.

Hamiltonian:

Ha(on) = Y (x — oa(x))?

XeN
Specification in A: 0 : Z — Z with o(x) = x for x ¢ A

in(o) = Z1A exp(—aHh(0))

where Z, is the normalizing constant.



Thermodynamic limit

Gibbs measure ;. as a limit

lim ?
A, K

More dimensions? Other point sets (Poisson process, etc)?
Motivation in Gandolfo-Ruiz-Ueltschi 2007:

Gaussian weights: Feynman-Kac representation of Bose
gas. Toth model.

« is proportional to the temperature of the system.

Model introduced by Feynman (1953), Kikuchi (1954), Kikuchi,
Denman, Schreiber (1960), Fichtner (1991), Betz and Ueltschi
(2008, 09, '11).

Our motivation: Biskup Richthammer (talk at EBP 2010).



Cycle of a bijection o

sequence of distinct sites (X, . . ., X») such that
o(Xi) = Xip1; o(Xn) = Xo
o is identified by {v: ~is a cycle of o}.
Problems:

“There should be no long cycles for « large, i.e. when sites are
heavily discouraged from jumping to a neighbor.”

“Cycles should increase in size when « decreases.”

“The main question is whether a transition occurs for some
value a. > 0, below which a fraction of the sites find
themselves in infinitely long cycles. ”



Ground states

o' is a local perturbation of the bijection o if

{xe€Z:odx)#o(x)} is finite

o is a ground state if for any local perturbation ¢’ of o,
H(c') — H(c) >0
(computable because the number of differences is finite).
For n € Z let n" be the bijection
n"(x) = x + n, XeL

Lemma: {n", n € Z} are all ground states for H.

When n # 0 these ground states have cycles of infinite length.



Reason: In a ground state there cannot be crossings: picture!

2

(x = n(x))Z+ (v —n)? < (x =)+ (v - n(x))?

when x < y and n(x) < n(y).

“Gibbs measures must be perturbations of these ground states.”



Gibbs formalism

Hamiltonian: For o bijection and A finite:

Ha(o) = 3 (x — o(x))2.

XeN

Boundary conditions: Let A finite,  bijection and define

B(A,n) := {o bijection : o(x) = n(x), x € A}
Specifications: probability measure 15, on B(A, 7):

inn(or) = Z: exp (— aHn(0)) 1{o € B(A, )},



Gibbs measures

e 1. on {bijections} is a Gibbs measure for the family (14 ) if
p(o oceurs in A|n oceurs in A°) = pp (o)

for u-almost all n and all finite A.

e G%: (convex) set of Gibbs for temperature «.

e Extremal Gibbs characterize G*.

e Ergodic are Gibbs.



Flow of a bijection n Define

Fi(n) = 1{nly) > x}

y<x

Fe(m):=>_1{n(y) < x}

y>x

(Net) Flow: F(n) := F*(n) — F(n)
e Flow is constant in x. Denote F*(n), F~(n).

e n-Gibbs: G& := extremal Gibbs measures with flow n.



Results of Biskup and Richthammer
For all « > 0,

1. Gibbs measures have finite flow:

If € G*, then p(F* < 0o, F~ < 00) = 1.

2. n-Gibbs measures have |n| infinite cycles:

For ne Z, if u € Gy, then there are n infinite cycles u-a.s.

3. For each nthere is only one n-Gibbs measure.
4. {extremal Gibbs} = {n-Gibbs}
5. Thermodynamic limit. For all  with flow n

lim exists and is n-Gibbs
/\/Z'LLA’"
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Comments on Biskup-Richthammer:

BR also prove non—existence at temperature 0. This relies on
the nonexistence of a uniform probability distribution on an
infinite countable set.

The uniqueness at positive temperature is obtained by a
cutblock argument used in the proof of 2.

The existence at positive temperature is based on a tightness
argument and proving that tightness preserves the flow.
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“Shift” operator

Observation: It suffices to study the 0-Gibbs measure.

Given n € Z, let the shift operator 0" : o — 6"c be defined by

(0"0)(x) = o(x) +n

So that #"1d = n", where 1d is the identity.

Lemma.

(0™~ 'is n-Gibbs < 1 is 0-Gibbs
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Explicit construction of the 0-Gibbs measure for « large.

Theorem (AFGL)
There exists o > 0 such that if & > ag:
e Explicit construction of a coupling (oa,\ C Z), such that

for finite A\, op ~ pa1a 0N B(A,1d), the specification on \ with
identity bondary conditions, and

limoyx=o0 a.s.
Iy A 7

e The law of o7 is the only 0-Gibbs measure.
e All cycles in nz are finite.

e Results export to n-Gibbs using the shift operator 6.
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n = 0: (Non-trivial) Cycles Let k > 2,

Cycle v = (X0, - - -, Xn, Xk41)s X0 = Xk11, 0(Xi) = Xip1.

o(vy) = min{xo, ..., Xn} is the origin of ~.

7| = k + 1 number of distinct sites used by ~.

The weight of ~

k

w(v) =ad (xi—xy1)

i=0

o identified with (o) := { non-trivial disjoint cycles of o}.

e v ~/, compatible if they use disjoint sets of sites.

14



Loss network: birth and death of cycles
e Current state: set of cycles ' ='(0)

e Atrate e () propose cycle 4. If it is compatible with present
cycles, then v is born. If not, ~ is “lost”.

e Each present cycle dies at rate 1.

e For finite region A, finite state Markov process with generator:

M= ey ~ T} [(Tufyh-HN)]+> [N {h-A(T)

yCA yel

e Call I'} the resulting process and 7} the process induced on
the set of bijections of Z.

e 114 IS reversible for 77{\. Trivial for finite A.

15



Stationary version and thermodynamical limit

Theorem. (Fernandez, F, Garcia 2001)

If
m(a):= Y |yle ") <1
y:0(7)=0

then:

o A stationary version of the loss network (), t € R) can be
constructed for all A finite or infinite. Call 1. the marginal law of

=1t
e For finite \ the time-marginal law of n) is i 1a-

e Spatial limits: Simultaneous coupling of (n), t € R, A C Z)
such that for all x € Z,

n(x) — ni(x) almost surely as N 7 7.
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Stationary version and thermodynamical limit

e Consequence: Thermodynamic limit: jipq — p weakly.
e 1, the law of 1, is 0-Gibbs.

e Time limits, coupling from the past: If { has finite cycles, then
coupling (np_t nf_ o)) Such that for all x,

almost surely.
e Consequences: 1) nf converges weakly to .

2) i Is the only invariant measure for n;
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Sketch of proof

Free process.

e Free birth and death process of cycles (superpositions
allowed).

e The invariant measure for the free process is a product of

Poisson: number of cycles of type ~ is Poisson with mean
e*W(’Y)_

e Stationary construction (time in R) of the free process.

e Space and time limits for the free process are trivial.

e Free process generates random set of space-time cylinders.
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Graphic construction of the Loss network (exclusion
interaction)

e Works as the free process but cycles incompatible with
present cycles cannot appear.

e Construction coupled to free construction forward in time

Use the free cylinders but erase (loose) those incompatible with
present cylinders. Proceed iteratively.

e Clan of ancestors of a cylinder C: cylinders born in the past
that may influence the birth of C.

e If clan of ancestors born after time 0 is finite, then the
process exists. This happens if m(«) < oc.

e If clan of ancestors is finite, stationary construction ok.
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e This happens if m(«) < 1.
¢ In this case space and time limits hold exponentially fast.

e Invariant measure for this process in finite A is pp 14. This is
the time marginal of n}.

e The time marginal of the infinite volume stationary process n;
is Gibbs.
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A particle system question
e Suppose that m(a) = co.

¢ In this case the loss network is not well defined, at least
starting with the empty configuration. The rate of birth of a
cycle with origin at 0 is infinite.

e But the 0-Gibbs measure is “invariant” for this non existent
dynamics (BR).

e Does it exist the stationary dynamics in this case?
Other open questions

e Are there infinite cycles in more than 2 dimensions?
Beltz-Uelchi have arguments supporting this conjecture.

e Can one describe all the ground states 2 or more
dimensions?
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Larger dimensions: d > 2

o No backwards percolation approach works for large « in Z9.

We can construct the (unique) 0-Gibbs state as a gas of
weighted cycles interacting by exclusion.

e Open: to establish the ground states in d > 2.
e Extremal measures? The lemma above no longer holds.

e Other hamiltonians? (x — 7(x))P for instance? Construction
works for high « in the same way.
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Construction of ;¥ from p°

e Finite perturbations of the ground state 1" can be obtained in
terms of perturbations of 7°.

e Shift operator: §"¢ as the operator
0"o(x)=0c(x)+n
Notice that (")~" = 6—".
Let L, be the dynamics defined by
Ln0"0c =0"Lo

Map to a configuration with flow 0, apply the zero dynamics,
map back to the configuration with flow n.
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Lemma. If u € Gy, then . is reversible for L.
Proof. Configurations o, o’
Denoteby A = {x € Z : o'(x) # o(x)}.

0"0’(x) = 0"0(x) for any x € A°, therefore

H(0"5") — =Y [x—o'(x) = nP =) [x-o(x)

XEN XEN

=D =)= [x —o(x)P?

XeN XEN
—2n [Z o'(x)=> J(X)]
XEN XEN
= H(¢') — H(0)

because o'(A) = o(A) and >°,cp 0’ (X) = D e 0(X).

— n]2
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