Villa Finally
Florence, August 27, 2012.

Long Range Last Passage Percolation

Francis Comets

Université Paris-Diderot

August 27, 2012

Joint work with Jeremy Quastel and Alejandro Ramirez

Particle System

System of N particle evolving in \mathbb{R} :

$$
\begin{equation*}
X_{i}(t+1)=\max _{1 \leq j \leq N}\left\{X_{j}(t)+\xi_{i, j}(t+1)\right\}, \tag{1}
\end{equation*}
$$

with $\left\{\xi_{i, j}(s): 1 \leq i, j \leq N, s \geq 1\right\}$ i.i.d.

- mutation / selection
- long-range Oriented Last Passage Percolation with N sites in the transverse direction:

$$
\begin{equation*}
X_{i}(t)=\max \left\{X_{j_{0}}(0)+\sum_{s=1}^{t} \xi_{j_{s}, j_{s-1}}(s) ; 1 \leq j_{s} \leq N \forall s=0, \ldots t-1, j_{t}=i\right\}, \tag{2}
\end{equation*}
$$

Brunet and Derrida [2004]

Outline

(1) Fixed N
(2) Gumbel distribution
(3) Perturbations of Gumbel
4. Front speed for bounded ξ

Fixed N

$$
N-\text { vector } \quad X(t)=\left(X_{i}(t), 1 \leq i \leq N\right)
$$

Particle remain grouped under the dynamics.
Front location $\Phi(X(t))$ describing the "mean position":
$\Phi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ symmetric, increasing, $\Phi(x+r 1)=r+\Phi(x)$.
Examples: $\Phi(x)=\max _{i=1, \ldots, N} x_{i}, \Phi(x)=$ median, arithmetic mean, or

$$
\Phi(x)=\ln \sum_{1 \leq i \leq N} e^{x_{i}}, \ldots
$$

Proposition

$X(t)-\Phi(X(t)) 1$ Markov chain in \mathbb{R}^{N}, ergodic (Doeblin, regeneration,...)

Fixed N, large t

If $\xi \in L^{1}$, the following limits exists a.s.

$$
v_{N}=\lim _{t \rightarrow \infty} t^{-1} \max \left\{X_{i}(t) ; 1 \leq i \leq N\right\}=\lim _{t \rightarrow \infty} t^{-1} \Phi(X(t))
$$

$v_{N}=$ Speed of the front.
Moreover, if $\xi \in L^{2}$,

$$
t^{-1 / 2}\left(\max \left\{X_{i}(t) ; 1 \leq i \leq N\right\}-v_{N} t\right)
$$

converges in law as $t \rightarrow \infty$ to a Gaussian r.v. with variance $\sigma_{N}^{2} \in(0, \infty)$.

Outline

(1) Fixed N
(2) Gumbel distribution
(3) Perturbations of Gumbel

4 Front speed for bounded ξ

Magics of Gumbel

Gumbel law $\mathbf{G}(a, \lambda)$

$$
\mathbb{P}(\xi \leq x)=\exp \left(-e^{-\lambda(x-a)}\right), \quad x \in \mathbb{R} .
$$

Theorem (Brunet and Derrida 2004)

Assume ξ are Gumbel. Then, for $\Phi(x)=\lambda^{-1} \ln \sum_{i=1}^{N} \exp \lambda x_{i}$, the sequence $(\Phi(X(t)) ; t \geq 0)$ is a random walk, with increments

$$
\Upsilon=a+\lambda^{-1} \ln \left(\sum_{i=1}^{N} \mathcal{E}_{i}^{-1}\right)
$$

where the \mathcal{E}_{i} are i.i.d. exponential of parameter 1.

$$
v_{N}=a+\lambda^{-1} E \ln \left(\sum_{i=1}^{N} \mathcal{E}_{i}^{-1}\right), \quad \sigma_{N}^{2}=\lambda^{-2} \operatorname{Var}\left(\ln \sum_{i=1}^{N} \mathcal{E}_{i}^{-1}\right) .
$$

Fluctuations in Gumbel case

Brunet and Derrida conclude that, for fixed N, the fluctuations of the front location for $t \rightarrow \infty$ are Gaussian.

Fluctuations in Gumbel case

Brunet and Derrida conclude that, for fixed N, the fluctuations of the front location for $t \rightarrow \infty$ are Gaussian.
As $N \rightarrow \infty$,

$$
\mathcal{S}^{(N)}:=\frac{\sum_{i=1}^{N} \mathcal{E}_{i}^{-1}-b_{N}}{N} \xrightarrow{\text { law }} \mathcal{S}
$$

where $b_{N}=N E\left(\mathcal{E}^{-1} ; \mathcal{E}^{-1}<N\right)$, and \mathcal{S} is the totally asymmetric stable law of index $\alpha=1$ (Cauchy), with characteristic function

$$
\begin{aligned}
E e^{i u \mathcal{S}} & =\exp \left\{i C u-\frac{\pi}{2}|u|\left\{1+i \frac{2}{\pi} \operatorname{sign}(u) \ln |u|\right\}\right\} \\
& =: \exp \Psi_{C}(u)
\end{aligned}
$$

for some real constant C and

$$
\ln b_{N}=\ln N+\ln \ln N-\frac{\gamma}{\ln N}+\mathcal{O}\left(\frac{1}{\ln ^{2} N}\right)
$$

So:

$$
\Upsilon_{N}=\ln \sum_{i=1}^{N} \mathcal{E}_{i}^{-1}=\ln \left(b_{N}+N \mathcal{S}^{(N)}\right)=\ln b_{N}+\frac{N \mathcal{S}^{(N)}}{b_{N}}+\ldots
$$

Fluctuations in Gumbel case

Theorem (CQR 2012)

Assume $\xi_{i, j}(t) \sim \mathrm{G}(0,1)$. Then, for all sequences $m_{N} \rightarrow \infty$ as $N \rightarrow \infty$,

$$
\frac{\Phi\left(X\left(\left[m_{N} \tau\right]\right)\right)-\beta_{N} m_{N} \tau}{m_{N} / \ln N} \xrightarrow{\text { law }} \mathcal{S}(\tau)
$$

in the Skorohod topology with $\mathcal{S}(\cdot)$ a totally asymmetric Cauchy process with Lévy exponent ψ_{C} where $\beta_{N}=\ln b_{N}+N b_{N}^{-1} \ln m_{N}$, and $\ln b_{N}=\ln N+\ln \operatorname{In} N-\frac{\gamma}{\ln N}+\mathcal{O}\left(\frac{1}{\ln ^{2} N}\right)$

Scaling limit of the front location as the number N of particles diverges is Cauchy.

Result also holds when time is not speeded-up $\left(m_{N}=1\right)$.
Fluctuations become macroscopic only when $\ln N=o\left(m_{N}\right)$.

Outline

(1) Fixed N

2 Gumbel distribution
(3) Perturbations of Gumbel

4 Front speed for bounded ξ

Front profile

$$
U_{N}(t, x)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{X_{i}(t)>x}, \quad x \in \mathbb{R}
$$

Front profile moving like a traveling wave in reaction-diffusion (with discretization and stochastic effects).
Should be examined around the front location $\Phi(X(t))$ or $\Phi(X(t-1))$.
From Brunet and Derrida 2004: For $\xi \sim G(0,1)$,
$\star \quad X(t)=\Phi(X(t-1)) \mathbf{1}+G(t)$ where $G(t)$ is a N-sample of $\mathrm{G}(0,1)$, independent of the walk $\Phi(X(t-1))$
\star

$$
U_{N}(t, x+\Phi(X(t-1))) \underset{N}{\longrightarrow} 1-\exp -e^{-x} \text { a.s. uniformly in } X(t-1)
$$

Front profile

$$
U_{N}(t, x)=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{X_{i}(t)>x}, \quad x \in \mathbb{R}
$$

Front profile moving like a traveling wave in reaction-diffusion (with discretization and stochastic effects).
Should be examined around the front location $\Phi(X(t))$ or $\Phi(X(t-1))$.
From Brunet and Derrida 2004: For $\xi \sim G(0,1)$,
凶 $\quad X(t)=\Phi(X(t-1)) \mathbf{1}+G(t)$ where $G(t)$ is a N-sample of $\mathrm{G}(0,1)$, independent of the walk $\Phi(X(t-1))$
凶 $U_{N}(t, x+\Phi(X(t-1))) \underset{N}{\longrightarrow} 1-\exp -e^{-x}$ a.s. uniformly in $X(t-1)$
We complete it by
$\ln N \times\left\{U_{N}\left(t, x+(t-1) \ln b_{N}+\Phi(X(0))\right)-u(x)\right\} \xrightarrow{\text { law }} u^{\prime}(x)(t \mathcal{S}+t \ln t+t C)$

Perturbations of Gumbel

Perturbations of Gumbel: what is left from these exact computations?
Defining $\epsilon(x)$ by $\mathbb{P}(\xi \leq x)=\exp -(1-\epsilon(x)) e^{-x}$, we assume

$$
\lim _{x \rightarrow+\infty} \epsilon(x)=0, \quad \text { and } \quad \epsilon(x) \in\left[-\delta^{-1}, 1-\delta\right]
$$

same tails on the right stronger assumption (domination)

Theorem (CQR 12)

$$
U_{N}(t, x-\Phi(X(t-1))) \longrightarrow u(x)=1-e^{-e^{-x}}
$$

uniformly in x and on $X(t-2)$ in probability as $N \rightarrow \infty$.
Two steps are needed to feel the attraction of the Gumbel

Outline

(1) Fixed N

2 Gumbel distribution
(3) Perturbations of Gumbel

4 Front speed for bounded ξ

Front speed for bounded variables

What are the finite-size corrections to the front speed in a case when the distribution of ξ is quite different from the Gumbel law? Look at bounded case.
Let $b<a$ and $p \in(0,1)$, and assume ξ is integrable and satisfy

$$
\mathbb{P}(\xi>a)=\mathbb{P}(\xi \in(b, a))=0, \quad \mathbb{P}(\xi=a)=p, \quad \mathbb{P}(\xi \in(b-\epsilon, b])>0
$$

for all $\epsilon>0(b<a)$. Clearly, $v_{N} \rightarrow a$ as $N \rightarrow \infty$. Convergence is extremely fast:

Front speed for bounded variables

What are the finite-size corrections to the front speed in a case when the distribution of ξ is quite different from the Gumbel law? Look at bounded case.
Let $b<a$ and $p \in(0,1)$, and assume ξ is integrable and satisfy

$$
\mathbb{P}(\xi>a)=\mathbb{P}(\xi \in(b, a))=0, \quad \mathbb{P}(\xi=a)=p, \quad \mathbb{P}(\xi \in(b-\epsilon, b])>0
$$

for all $\epsilon>0(b<a)$. Clearly, $v_{N} \rightarrow a$ as $N \rightarrow \infty$. Convergence is extremely fast:

Theorem (CQR 12)

$$
v_{N}=a-(a-b)(1-p)^{N^{2}} 2^{N}+o\left((1-p)^{N^{2}} 2^{N}\right), \quad N \rightarrow \infty
$$

The leading terms depend only on a few features of the law of ξ : largest value a, probability mass p and the $a-b$ with second largest.
All these involve the top of the support of the distribution, the other details being irrelevant. Such a behavior is expected for pulled fronts.

Front speed for bounded variables

Convergence extremely fast in

$$
v_{N}=a-(a-b)(1-p)^{N^{2}} 2^{N}+\ldots
$$

Parallel to branching random walk with selection, and the Derrida-Brunet correction:
Bérard-Gouéré 2011, Berestycki- Berestycki-Schweinsberg 2011 (and Mueller-Mytnik-Quastel 2011 for stochastic KPP)

$$
v_{N}=v_{\infty}-\log -\text { corrections }
$$

much slower!! They deal with the case

$$
2 \times p<1
$$

Our result for bounded ξ correspond to the other case.

First step of proof: front speed for the Bernoulli distribution

Start with Bernoulli case:

$$
\mathbb{P}\left(\xi_{i, j}(t)=1\right)=p, \quad \mathbb{P}\left(\xi_{i, j}(t)=0\right)=q=1-p, \quad p \in(0,1) .
$$

Leaders and laggers:

$$
Z(t)=\sharp\left\{j: 1 \leq j \leq N, X_{j}(t)=1+\max \left\{X_{i}(t-1) ; i \leq N\right\}\right\} .
$$

is a Markov chain on $\{0,1, \ldots, N\}$ with transitions given by the binomial distributions

$$
\mathbb{P}(Z(t+1)=\cdot \mid Z(t)=m)= \begin{cases}\mathcal{B}\left(N, 1-q^{m}\right)(\cdot), & m \geq 1 \\ \mathcal{B}\left(N, 1-q^{N}\right)(\cdot), & m=0\end{cases}
$$

Starting from 0 or from N, the chain has the same law.

Lemma (CQR 12)

$$
v_{N}=1-q^{N^{2}} 2^{N}+o\left(q^{N^{2}} 2^{N}\right)
$$

Second step: front speed for discrete distribution

We extend the ideas of proof to the case of $\xi \in\{k, k-1, k-2, \ldots\}$: with $p_{\ell}=\mathbb{P}(\xi=\ell)$, assume

$$
p_{k} \times p_{k-1}>0
$$

and $\mathbb{E}\left(\left|\xi_{0,0}\right|\right)<\infty$. Then,

$$
v_{N}=k-q_{k}^{N^{2}} 2^{N}+o\left(q_{k}^{N^{2}} 2^{N}\right),
$$

as $N \rightarrow \infty$, where $q_{k}:=1-p_{k}$. (The extension is non trivial).

Sketch of proof of first step

ξ is Bernoulli (p). The speed relates to the invariant measure ν_{N} of the chain $Z(t)=\sharp\left\{j: X_{j}(t)=1+\max _{i} X_{i}(t-1)\right\}$, by

$$
v_{N}=1-\nu_{N}(0)=1-\left(E_{0} T_{0}\right)^{-1}=1-\left(E_{N} T_{0}\right)^{-1} .
$$

We prove:

$$
\begin{aligned}
& \text { \& } P_{N}\left(T_{0}<T_{N}\right) \sim q^{N^{2}} 2^{N}, \\
& \lim _{N \rightarrow \infty} E_{N}\left(T_{0} \mid T_{0}<T_{N}\right)=2, \\
& \lim _{N \rightarrow \infty} E_{N}\left(T_{N} \mid T_{N}<T_{0}\right)=1 .
\end{aligned}
$$

We estimate $P_{N}\left(T_{0}=\ell<T_{N}\right)$. For $\ell=1$,

$$
P_{N}\left(T_{0}=1<T_{N}\right)=q^{N^{2}},
$$

Contribution of strategies in two steps:

$$
\begin{aligned}
P_{N}\left(T_{0}=2<T_{N}\right) & =\sum_{k=1}^{N-1}\binom{N}{k}\left(1-q^{N}\right)^{k} q^{N(N-k)} \times\binom{ N}{0}\left(1-q^{k}\right)^{0} q^{k N} \\
& =q^{N^{2}} \sum_{k=1}^{N-1}\binom{N}{k}\left(1-q^{N}\right)^{k} \\
& =q^{N^{2}}\left[\left(2-q^{N}\right)^{N}-1-\left(1-q^{N}\right)^{N}\right] \\
& \sim q^{N^{2}} 2^{N} .
\end{aligned}
$$

And finally (the heart of the problem)

$$
P_{N}\left(T_{0}<T_{N}, T_{0} \geq 3\right)=o\left(2^{N}\right) .
$$

