Entropic repulsion and metastability in the solid-on-solid (SOS) model

P. Caputo, joint with E.Lubetzky, F.Martinelli, F.L.Toninelli, A.Sly

Firenze - August 29, 2012

Plan

- SOS: a random interface model
- Heat Bath Dynamics: Poincaré inequality
- Open problems and conjectures
- SOS with a wall. Entropic repulsion
- Dynamics of entropic repulsion: Metastability
- Exponentially large relaxation times
- Methods

(2+1)Dimensional SOS model

Discrete height: $\varphi = \{\varphi_x, x \in \mathbb{Z}^2\}$, with $\varphi_x \in \mathbb{Z}$. Λ square of side *L* in \mathbb{Z}^2 centered at 0. 0 boundary condition: $\varphi_x = 0$ for all $x \in \mathbb{Z}^2 \setminus \Lambda$. Gibbs measure: $\beta > 0$

$$\pi(\varphi) = \pi_{\beta,L}(\varphi) = \frac{1}{Z_{\beta,L}} \exp\left(-\beta \sum_{x \sim y} |\varphi_x - \varphi_y|\right)$$

(2+1)Dimensional SOS model

Discrete height: $\varphi = \{\varphi_x, x \in \mathbb{Z}^2\}$, with $\varphi_x \in \mathbb{Z}$. Λ square of side *L* in \mathbb{Z}^2 centered at 0. 0 boundary condition: $\varphi_x = 0$ for all $x \in \mathbb{Z}^2 \setminus \Lambda$. Gibbs measure: $\beta > 0$

$$\pi(\varphi) = \pi_{\beta,L}(\varphi) = \frac{1}{Z_{\beta,L}} \exp\left(-\beta \sum_{x \sim y} |\varphi_x - \varphi_y|\right)$$

Roughening transition:

Low temperature (large β , rigid phase): localization $\pi_{\beta,L}(\varphi_0^2) \leq C_{\beta}$ (exponential tails, via Peierls argument)

High temperature (small β , rough phase): delocalization $\pi_{\beta,L}(\varphi_0^2) \sim \log L$ (difficult ! see Frohlich-Spencer CMP 1981). [One expects Gaussian fluctuations]

Heat bath dynamics of SOS model

Cont. time π -reversible Markov chain with generator

$$\mathcal{L}f(\varphi) = \sum_{x \in \Lambda} \left[\pi(f \mid \varphi_{\Lambda \setminus \{x\}}) - f(\varphi) \right].$$

Dirichlet form $\mathcal{E}(f, f) = \sum_{x \in \Lambda} \pi [\operatorname{Var}_{x}(f)]$ where $\operatorname{Var}_{x}(f) = \operatorname{Var}_{\pi}(f | \varphi_{\Lambda \setminus \{x\}})$. [Glauber dynamics, Gibbs sampler]

Heat bath dynamics of SOS model

Cont. time π -reversible Markov chain with generator

$$\mathcal{L}f(\varphi) = \sum_{x \in \Lambda} \left[\pi(f \mid \varphi_{\Lambda \setminus \{x\}}) - f(\varphi) \right].$$

Dirichlet form $\mathcal{E}(f, f) = \sum_{x \in \Lambda} \pi [\operatorname{Var}_{x}(f)]$ where $\operatorname{Var}_{x}(f) = \operatorname{Var}_{\pi}(f | \varphi_{\Lambda \setminus \{x\}})$. [Glauber dynamics, Gibbs sampler] Poincaré inequality: find $\gamma(L, \pi) > 0$ such that for all $f \in L^{2}(\pi)$:

$$\operatorname{Var}_{\pi}(f) \leqslant \gamma(L,\pi) \mathcal{E}(f,f)$$

 $\gamma(L,\pi)$ is the *Relaxation Time*, inverse of *Spectral Gap*.

Heat bath dynamics of SOS model

Cont. time π -reversible Markov chain with generator

$$\mathcal{L}f(\varphi) = \sum_{x \in \Lambda} \left[\pi(f \mid \varphi_{\Lambda \setminus \{x\}}) - f(\varphi) \right].$$

Dirichlet form $\mathcal{E}(f, f) = \sum_{x \in \Lambda} \pi [\operatorname{Var}_{x}(f)]$ where $\operatorname{Var}_{x}(f) = \operatorname{Var}_{\pi}(f | \varphi_{\Lambda \setminus \{x\}})$. [Glauber dynamics, Gibbs sampler] Poincaré inequality: find $\gamma(L, \pi) > 0$ such that for all $f \in L^{2}(\pi)$:

$$\operatorname{Var}_{\pi}(f) \leqslant \gamma(L,\pi) \mathcal{E}(f,f)$$

 $\gamma(L,\pi)$ is the *Relaxation Time*, inverse of *Spectral Gap*.

Open problem: prove that $\gamma(L,\pi)$ is polynomial in L

Remarks on the continuous SOS model

Same problem, but now $arphi_{x} \in \mathbb{R}$ and

$$\pi(\varphi) = \frac{1}{Z_{\beta,L}} \exp\left(-\beta \sum_{x \sim y} |\varphi_x - \varphi_y|\right)$$

is a log-concave probability on \mathbb{R}^{Λ} . No roughening transition in the continuous model, surface is always rough in 2D.

Remarks on the continuous SOS model

Same problem, but now $arphi_{\mathsf{X}} \in \mathbb{R}$ and

$$\pi(\varphi) = \frac{1}{Z_{\beta,L}} \exp\left(-\beta \sum_{x \sim y} |\varphi_x - \varphi_y|\right)$$

is a log-concave probability on \mathbb{R}^{Λ} . No roughening transition in the continuous model, surface is always rough in 2D.

Dynamics:

Langevin diffusion (SDE): $\mathcal{E}(f, f) = \frac{1}{2} \sum_{x \in \Lambda} \pi \left[(\partial_x f)^2 \right]$ Poincaré inequality:

$$\operatorname{Var}_{\pi}(f) \leqslant \gamma(L,\pi) \mathcal{E}(f,f)$$

Expected: $\gamma(L, \pi) = O(L^2)$. As in Gaussian free field case. (1+1)D SOS Model $\varphi = \{\varphi_i, i = 1, \dots, L\}: \quad \nu_i(d\eta_i) = \frac{e^{-\beta\eta_i}}{Z} d\eta_i,$ $\pi = \bigotimes_{i=1}^{L-1} \nu_i \Big(\cdot | \sum_i \eta_i = 0 \Big), \quad \eta_i := \varphi_{i+1} - \varphi_i.$

Continuous heights: $\varphi_i \in \mathbb{R}$, then $\gamma(L, \pi) = O(L^2)$ [Barthe-E.Milman; Barthe-Cordero Erasquin, Barthe-Wolff]

Discrete heights: $\varphi_i \in \mathbb{Z}$, then $\gamma(L, \pi) = O(L^2)$ [Martinelli-Sinclair]

Metropolis chain with ± 1 height updates:

$$\mathcal{E}(f,f) = \frac{1}{2} \sum_{x} \pi \left[c_x (\nabla_x f)^2 \right]$$

C-Martinelli-Toninelli : $\gamma(L, \pi) = O(L^2(\log L)^c)$ (CMP 2012, approximate motion by mean curvature). (2+1)D SOS (discrete) with a wall: Entropic repulsion $\varphi_x \in \mathbb{Z}$ and $\pi_+(\varphi) = \pi(\varphi | \varphi_x \ge 0 \ \forall x \in \Lambda)$

Entropic repulsion heuristics (β large):

- shift heights $h \rightarrow h + 1$ at energy loss $-4\beta L$ (boundary)
- full downward spikes at x give the gain in entropy $+L^2 e^{-4\beta h}$.
- surface grows until $4\beta L \approx L^2 e^{-4\beta h}$ or $h \approx H(L) := \frac{1}{4\beta} \log L$.

Bricmont, El Mellouki, Frhölich '82: $\frac{1}{|\Lambda|} \sum_{x \in \Lambda} \pi_{+}[\varphi_{x}] \in [c_{1} \log L, c_{2} \log L]$ (2+1)D SOS (discrete) with a wall: Entropic repulsion $\varphi_x \in \mathbb{Z}$ and $\pi_+(\varphi) = \pi(\varphi | \varphi_x \ge 0 \ \forall x \in \Lambda)$

Entropic repulsion heuristics (β large):

- shift heights $h \rightarrow h + 1$ at energy loss $-4\beta L$ (boundary)
- full downward spikes at x give the gain in entropy $+L^2 e^{-4\beta h}$.
- surface grows until $4\beta L \approx L^2 e^{-4\beta h}$ or $h \approx H(L) := \frac{1}{4\beta} \log L$.

Bricmont, El Mellouki, Frhölich '82: $\frac{1}{|\Lambda|} \sum_{x \in \Lambda} \pi_{+}[\varphi_{x}] \in [c_{1} \log L, c_{2} \log L]$

Theorem

For any $\beta \ge \beta_0$, $k \ge k_0$:

$$\pi_+\left(\#\left\{x\in\Lambda:\ \varphi_x\notin [H(L)-k,H(L)+k]\right\}>e^{-2\beta k}L^2\right)\leqslant e^{-cL}.$$

Metastability

A deeper analysis of the free energy landscape reveals metastable behavior:

Metastability

A deeper analysis of the free energy landscape reveals metastable behavior:

Theorem

Start heat bath dynamics at $\varphi \equiv 0$. For $a \in (0, 1]$, let $\tau_a = \min\{t > 0 : \varphi(t) \in \Omega_a\}$ where $\Omega_a = \{\varphi : \#\{x : \varphi_x \ge aH(L)\} > 0.9 L^2\}$. Then $\lim_{L \to \infty} \pi_+(\Omega_a) = 1$ and yet

$$\lim_{L\to\infty}\mathbb{P}\left(e^{cL^a}\leq\tau_a\leq e^{(1/c)L^a}\right)=1.$$

Mixing time bounds

SOS model with wall and ceiling

$$\pi_{+,b}(\varphi) = \pi(\varphi \,|\, \mathsf{0} \leqslant \varphi_x \leqslant L \,, \, \forall x \in \mathsf{\Lambda})$$

Heat bath is then a Markov chain with finite state space.

$$\mathcal{T}_{ ext{mix}}(\mathcal{L}) = \inf \left\{ t > 0 : \max_{arphi} \| p_t(arphi, \cdot) - \pi_{+, b} \|_{ ext{TV}} \leq rac{1}{2}
ight\}$$

From standard bounds:

$$\gamma(L,\pi_{+,b}) \leqslant c T_{\min}(L) \leqslant c' L^3 \gamma(L,\pi_{+,b}).$$

Mixing time bounds

SOS model with wall and ceiling

$$\pi_{+,b}(\varphi) = \pi(\varphi \,|\, \mathsf{0} \ \leqslant \ arphi_x \ \leqslant \ L \,, \ orall x \in \mathsf{\Lambda})$$

Heat bath is then a Markov chain with finite state space.

$$\mathcal{T}_{ ext{mix}}(L) = \inf \left\{ t > 0 : \max_{\varphi} \| p_t(\varphi, \cdot) - \pi_{+,b} \|_{ ext{TV}} \leq \frac{1}{2}
ight\}$$

From standard bounds:

$$\gamma(L,\pi_{+,b}) \leqslant c T_{\min}(L) \leqslant c' L^3 \gamma(L,\pi_{+,b}).$$

Theorem

For any $\beta \ge \beta_0$, $\exists c > 0$:

$$e^{cL} \leq T_{\min}(L) \leq e^{(1/c)L}.$$

Spectral gap bounds

Without ceiling (π_+) . Suitable recursive analysis shows that

$$\gamma(L,\pi_+)\approx\gamma(L,\pi_{+,b})$$

Then from previous theorem, one has

$$e^{cL} \leq \gamma(L,\pi_+) \leq e^{(1/c)L}.$$

Without wall (π). Expect polynomial $\gamma(L, \pi)$. We prove Theorem

$$\gamma(L,\pi) \leq e^{L^{5/6}}.$$

Methods 1

Equilibrium estimates for $\pi, \pi_+, \pi_{+,b}$: Monotonicity, FKG inequalities, Peierls type estimates (contour estimates)

$$\pi_+(\gamma ext{ is an } h- ext{contour}) \ \leqslant \ \expigg\{-eta|\gamma|+c ext{ Area}(\gamma)e^{-4eta h}igg\}.$$

Methods 2

Metastability analysis and lower bounds on mixing times: Refined equilibrium bounds to quantify bottlenecks

Main idea: Fix $h = aH(L) = \frac{a}{4\beta} \log L$. Restricted ensemble $\pi_A = \pi_+(\cdot | A)$, where A is the event that all h contours γ have Area $(\gamma) \leq \delta L^{2a}$, δ small.

Then in π_A :

1) all *h* contours have area less than $(\log L)^2$ w.h.p.

2)
$$\pi_A(\partial A) \leqslant e^{-cL^a}$$

3) π_A (large density of heights at least $h+1) \leqslant e^{-cL^a}$

This establishes bottleneck:

 $\tau_a \ge e^{cL^a}$ w.h.p. when started from $\varphi \equiv 0$.

Methods 3

Upper bounds on mixing times: coupling arguments, with monotonicity and a *standard canonical paths* technique yield the upper bound

$$T_{
m mix}(L) \leqslant e^{c \, L \log L}$$

To obtain $T_{mix}(L) \leq e^{cL}$ much more work is needed. Main steps:

- Improved canonical paths argument: define reduced space $G \subset \Omega$ such that on G canonical paths gives $T_{\min}(L; G) \leq e^{cL}$.
- If T_G is time needed to enter G with probab. α , then $T_{\min}(L) \leq c(\alpha)(T_G^2 + T_{\min}(L, G)).$
- Show that uniformly in initial condition, the process enters G within time e^{cL} ~ T_G with probab. at least α ~ 1/2.
- *Cluster expansion* tools to have fine control of the statistics of SOS contours.