Entropic repulsion and metastability in the
solid-on-solid (SOS) model

P. Caputo,
joint with E.Lubetzky, F.Martinelli, F.L. Toninelli, A.Sly

Firenze - August 29, 2012



Plan

SOS: a random interface model

Heat Bath Dynamics: Poincaré inequality
Open problems and conjectures

SOS with a wall. Entropic repulsion
Dynamics of entropic repulsion: Metastability

Exponentially large relaxation times
Methods



(2+1)Dimensional SOS model

Discrete height: ¢ = {¢x, x € Z?}, with ¢, € Z.
A square of side L in Z? centered at 0.

0 boundary condition: ¢, = 0 for all x € Z2\ A,
Gibbs measure: 8 >0

w(w:m(so):—exp( B lex — o)

X~y
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Roughening transition:

Low temperature (large [3, rigid phase): localization
75.0(03) < Cg (exponential tails, via Peierls argument)

High temperature (small 3, rough phase): delocalization
75.1(¢3) ~ log L ( difficult ! see Frohlich-Spencer CMP 1981).
[One expects Gaussian fluctuations]



Heat bath dynamics of SOS model

Cont. time m-reversible Markov chain with generator

Lf(@) = [7(fleny) — F(9)] -

x€eN

Dirichlet form E(f,f) = > . m[Varg(f)]

xeN
where Var,(f) = Var:(f | o\ (x})-
[Glauber dynamics, Gibbs sampler]
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Heat bath dynamics of SOS model
Cont. time m-reversible Markov chain with generator
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v(L, ) is the Relaxation Time, inverse of Spectral Gap.



Remarks on the continuous SOS model
Same problem, but now ¢, € R and
m(p) = —exp B lex — oyl
Al GIOPEEEY

is a log-concave probability on R".
No roughening transition in the continuous model,
surface is always rough in 2D.



Remarks on the continuous SOS model
Same problem, but now ¢, € R and

W(@)ZTeXp< BZI%—%)
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is a log-concave probability on R".
No roughening transition in the continuous model,
surface is always rough in 2D.

Dynamics:
Langevin diffusion (SDE): E(f,f) = 33" a7 [(0xF)?]

Poincaré inequality:
Var,(f) < ~(L,7)&(F,f)

Expected: (L, ) = O(L?).
As in Gaussian free field case.



(1+1)D SOS Model
QY = {(p,‘, | = ].7 ey L}: I/,'(dT],') = eizﬁm dT],',

T=Q 1Vl< |Z771—0> Ni ‘= Pi+1 — Pi.

Continuous heights: ¢; € R, then (L, 7) = O(L?)
[Barthe-E.Milman; Barthe-Cordero Erasquin, Barthe-Wolff]

Discrete heights: ¢; € Z, then v(L,7) = O(L?)
[Martinelli-Sinclair]

Metropolis chain with +1 height updates:

E(f,f) = % > e Vif)?]

X

C-Martinelli-Toninelli : (L, 7) = O(L?(log L))
(CMP 2012, approximate motion by mean curvature).



(2+1)D SOS (discrete) with a wall: Entropic repulsion

px € Z and
m(p) = m(elox = 0 Vx €A)

Entropic repulsion heuristics (53 large):

o shift heights h — h+ 1 at energy loss —45L (boundary)

o full downward spikes at x give the gain in entropy +L2 4",
o surface grows until 43L ~ L> e *" or h = H(L) := 35 log L.

Bricmont, El Mellouki, Frholich '82:
|T1‘ ZXG/\ T+ [QDX] € [Cl |Og Lv (&) IOg L]



(2+1)D SOS (discrete) with a wall: Entropic repulsion
px € Z and
m(p) = m(elox = 0 Vx €A)

Entropic repulsion heuristics (53 large):

o shift heights h — h+ 1 at energy loss —45L (boundary)

o full downward spikes at x give the gain in entropy +L2 4",
o surface grows until 43L ~ L> e *" or h = H(L) := 35 log L.

Bricmont, El Mellouki, Frholich '82:
|T1‘ ZXG/\ T+ [QDX] € [Cl |Og Lv (&) IOg L]

Theorem
Forany B > [Bo, k > ko:

s (#{x eN: pxd [H(L) — k H(L) + k]} > e—2ﬁkL2) < et



Metastability

A deeper analysis of the free energy landscape reveals
metastable behavior:




Metastability

A deeper analysis of the free energy landscape reveals
metastable behavior:

H(L)
Theorem

Start heat bath dynamics at p = 0.

For a € (0,1], let 7, = min{t > 0: ¢(t) € Q,} where
Qo ={p: #{x:9x>aH(L)} >09L%} .

Then lim; o 7+(Q,) = 1 and yet

im P (eC” <7, < e(l/c)“) —1.



Mixing time bounds

SOS model with wall and ceiling

T1b(p) = (@0 < @ < L, VxeN)
Heat bath is then a Markov chain with finite state space.
Tiix(L) = inf {t > 0 max, [|pe(p,) — 7 pllrv < 5}

From standard bounds:
WL mip) < € Taix(L) < 'LBry(Lmyp).



Mixing time bounds

SOS model with wall and ceiling

T1b(p) = (@0 < @ < L, VxeN)
Heat bath is then a Markov chain with finite state space.
Tiix(L) = inf {t > 0 max, [|pe(p,) — 7 pllrv < 5}

From standard bounds:
WL mip) < € Taix(L) < 'LBry(Lmyp).

Theorem
For any 8 > [y, dc > 0:

ecL < Tle(L) < e(l/c) L'



Spectral gap bounds

Without ceiling (7). Suitable recursive analysis shows that
(L, my) = (L 7y p)
Then from previous theorem, one has
el < (L my) < /L,

Without wall (7). Expect polynomial ~(L, 7). We prove

Theorem

y(L,m) < et



Methods 1

Equilibrium estimates for 7, 74, 74 »: Monotonicity, FKG
inequalities, Peierls type estimates (contour estimates)

0

74 (7 is an h — contour) < exp{ — Bly| + CArea(’y)e_4’8h}_



Methods 2

Metastability analysis and lower bounds on mixing times:
Refined equilibrium bounds to quantify bottlenecks

Main idea: Fix h = aH(L) = 75 log L.
Restricted ensemble m4 = m4(-| A), where A is the event that all h
contours vy have Area(y) < §L22, § small.

Then in 74:

1) all h contours have area less than (log L)? w.h.p.

2) ma(0A) < e~

3) 7a (large density of heights at least h +1) < e~V

This establishes bottleneck:
7, > et w.h.p. when started from ¢ = 0.



Methods 3

Upper bounds on mixing times: coupling arguments, with
monotonicity and a standard canonical paths technique yield the
upper bound

Tmix(L) < ecLIogL
To obtain Toix(L) < et much more work is needed.
Main steps:
e Improved canonical paths argument: define reduced space
G C Q such that on G canonical paths gives
Tmix(L; G) < ek
e If T¢ is time needed to enter G with probab. «, then
Tmix(L) < c(@)(T2 + Tmix(L, G)).
e Show that uniformly in initial condition, the process enters G
within time et ~ T with probab. at least a ~ 1/2.
o Cluster expansion tools to have fine control of the statistics of
SOS contours.



