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Plan

• SOS: a random interface model

• Heat Bath Dynamics: Poincaré inequality

• Open problems and conjectures

• SOS with a wall. Entropic repulsion

• Dynamics of entropic repulsion: Metastability

• Exponentially large relaxation times

• Methods



(2+1)Dimensional SOS model

Discrete height: ϕ = {ϕx , x ∈ Z2}, with ϕx ∈ Z.

Λ square of side L in Z2 centered at 0.

0 boundary condition: ϕx = 0 for all x ∈ Z2 \ Λ.

Gibbs measure: β > 0

π(ϕ) = πβ,L(ϕ) =
1

Zβ,L
exp

(

− β
∑

x∼y

|ϕx − ϕy |
)
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Roughening transition:

Low temperature (large β, rigid phase): localization
πβ,L(ϕ2

0) ! Cβ (exponential tails, via Peierls argument)

High temperature (small β, rough phase): delocalization
πβ,L(ϕ2

0) ∼ log L ( difficult ! see Frohlich-Spencer CMP 1981).
[One expects Gaussian fluctuations]



Heat bath dynamics of SOS model

Cont. time π-reversible Markov chain with generator

Lf (ϕ) =
∑

x∈Λ

[

π(f |ϕΛ\{x})− f (ϕ)
]

.

Dirichlet form E(f , f ) =
∑

x∈Λ π [Varx(f )]

where Varx(f ) = Varπ(f |ϕΛ\{x}).

[Glauber dynamics, Gibbs sampler]
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where Varx(f ) = Varπ(f |ϕΛ\{x}).

[Glauber dynamics, Gibbs sampler]

Poincaré inequality: find γ(L, π) > 0 such that for all f ∈ L2(π):

Varπ(f ) ! γ(L, π) E(f , f )

γ(L, π) is the Relaxation Time, inverse of Spectral Gap.

Open problem: prove that γ(L, π) is polynomial in L



Remarks on the continuous SOS model

Same problem, but now ϕx ∈ R and

π(ϕ) =
1

Zβ,L
exp

(

− β
∑

x∼y

|ϕx − ϕy |
)

is a log-concave probability on RΛ.
No roughening transition in the continuous model,
surface is always rough in 2D.
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Dynamics:

Langevin diffusion (SDE): E(f , f ) = 1
2

∑

x∈Λ π
[

(∂x f )2
]

Poincaré inequality:

Varπ(f ) ! γ(L, π) E(f , f )

Expected: γ(L, π) = O(L2).
As in Gaussian free field case.



(1 + 1)D SOS Model

ϕ = {ϕi , i = 1, . . . , L}: νi (dηi ) =
e−βηi

Z dηi ,

π = ⊗L−1
i=1 νi

(

· |
∑

i

ηi = 0
)

, ηi := ϕi+1 − ϕi .

Continuous heights: ϕi ∈ R, then γ(L, π) = O(L2)
[Barthe-E.Milman; Barthe-Cordero Erasquin, Barthe-Wolff]

Discrete heights: ϕi ∈ Z, then γ(L, π) = O(L2)
[Martinelli-Sinclair]

Metropolis chain with ±1 height updates:

E(f , f ) =
1

2

∑

x

π
[

cx(∇x f )
2
]

C-Martinelli-Toninelli : γ(L, π) = O
(

L2(log L)c
)

(CMP 2012, approximate motion by mean curvature).



(2 + 1)D SOS (discrete) with a wall: Entropic repulsion

ϕx ∈ Z and
π+(ϕ) = π(ϕ |ϕx " 0 ∀x ∈ Λ)

Entropic repulsion heuristics (β large):

• shift heights h → h + 1 at energy loss −4βL (boundary)

• full downward spikes at x give the gain in entropy +L2 e−4βh.

• surface grows until 4βL ≈ L2 e−4βh or h ≈ H(L) := 1
4β log L.

Bricmont, El Mellouki, Frhölich ’82:
1
|Λ|

∑

x∈Λ π+[ϕx ] ∈ [c1 log L, c2 log L]
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Theorem
For any β " β0, k " k0:

π+
(

#
{

x ∈ Λ : ϕx /∈ [H(L) − k ,H(L) + k]
}

> e−2βkL2
)

! e−cL.



Metastability
A deeper analysis of the free energy landscape reveals
metastable behavior:

H(L)
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Theorem
Start heat bath dynamics at ϕ ≡ 0.
For a ∈ (0, 1], let τa = min{t > 0 : ϕ(t) ∈ Ωa} where

Ωa =
{

ϕ : #
{

x : ϕx ≥ aH(L)
}

> 0.9L2
}

.
Then limL→∞ π+(Ωa) = 1 and yet

lim
L→∞

P

(

ecL
a

≤ τa ≤ e(1/c)L
a
)

= 1 .



Mixing time bounds

SOS model with wall and ceiling

π+,b(ϕ) = π(ϕ | 0 ! ϕx ! L , ∀x ∈ Λ)

Heat bath is then a Markov chain with finite state space.

Tmix(L) = inf
{

t > 0 : maxϕ ‖pt(ϕ, ·) − π+,b‖TV ≤ 1
2

}

From standard bounds:
γ(L, π+,b) ! c Tmix(L) ! c ′L3γ(L, π+,b).
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From standard bounds:
γ(L, π+,b) ! c Tmix(L) ! c ′L3γ(L, π+,b).

Theorem
For any β " β0, ∃c > 0:

ec L ≤ Tmix(L) ≤ e(1/c) L.



Spectral gap bounds

Without ceiling (π+). Suitable recursive analysis shows that

γ(L, π+) ≈ γ(L, π+,b)

Then from previous theorem, one has

ec L ≤ γ(L, π+) ≤ e(1/c) L.

Without wall (π). Expect polynomial γ(L, π). We prove

Theorem

γ(L, π) ≤ eL
5/6

.



Methods 1

Equilibrium estimates for π, π+, π+,b: Monotonicity, FKG
inequalities, Peierls type estimates (contour estimates)

>h

!h

γ

0

0

00

π+(γ is an h − contour) ! exp
{

− β|γ|+ c Area(γ)e−4βh
}

.



Methods 2

Metastability analysis and lower bounds on mixing times:
Refined equilibrium bounds to quantify bottlenecks

Main idea: Fix h = aH(L) = a
4β log L.

Restricted ensemble πA = π+(· |A), where A is the event that all h
contours γ have Area(γ) ! δL2a, δ small.

Then in πA:

1) all h contours have area less than (log L)2 w.h.p.

2) πA(∂A) ! e−cLa

3) πA (large density of heights at least h + 1) ! e−cLa

This establishes bottleneck:
τa " ecL

a
w.h.p. when started from ϕ ≡ 0.



Methods 3
Upper bounds on mixing times: coupling arguments, with
monotonicity and a standard canonical paths technique yield the
upper bound

Tmix(L) ! ec L log L

To obtain Tmix(L) ! ec L much more work is needed.

Main steps:

• Improved canonical paths argument: define reduced space
G ⊂ Ω such that on G canonical paths gives
Tmix(L;G ) ! ec L.

• If TG is time needed to enter G with probab. α, then
Tmix(L) ! c(α)(T 2

G + Tmix(L,G )).

• Show that uniformly in initial condition, the process enters G
within time ecL ∼ TG with probab. at least α ∼ 1/2.

• Cluster expansion tools to have fine control of the statistics of
SOS contours.


