Metastability & interface motion in disordered media

Thierry Bodineau

Joint work with

B. Graham, A. Teixeira, M. Wouts

IPS conference

Outline

Metastability for the dilute Ising model

- Ising Model
- Glauber dynamics and metastability
- Random interactions and catalyst effect

Interface motion in random media

- Zero temperature phase transition
- Positive velocity & renormalization procedure

Domain $\Lambda \subset \mathbb{Z}^d$

Configurations :
$$\sigma_{\Lambda} = \{\sigma_i\}_{i \in \Lambda} \in \{-1, 1\}^{\Lambda}$$

Nearest neighbor interactions and boundary conditions

$$H^{+}(\sigma_{\Lambda}) = -\sum_{\stackrel{i \sim j}{i, j \in \Lambda}} \sigma_{i} \sigma_{j} - \sum_{\stackrel{i \sim j}{i \in \Lambda, j \not \in \Lambda}} \sigma_{i}$$

N

Gibbs measure

$$\mu_{\beta,\Lambda}^+(\sigma_{\Lambda}) = \frac{1}{Z_{\beta,\Lambda}^+} \exp\left(-\beta H^+(\sigma_{\Lambda})\right)$$

For
$$\Lambda_N = \{-N, N\}^d$$
 define

$$\mu_{\beta,\mathsf{N}}^+ = \mu_{\beta,\mathsf{\Lambda}_\mathsf{N}}^+$$

Thermodynamic limit

$$\lim_{N\to\infty}\mu_{\beta,N}^+=\mu_{\beta}^+$$

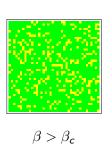
Phase transition

Thermodynamic limit

$$\lim_{N\to\infty}\mu_{\beta,N}^+=\mu_{\beta}^+$$

Magnetization

$$m_{eta} = \mathbb{E}_{\mu^+_{eta}}(\sigma_0)$$



There is a critical value β_c such that

$$\beta > \beta_c \Leftrightarrow m_\beta > 0$$

Influence of the boundary

$$\beta < \frac{\beta_{c}}{\beta} \Rightarrow \mu_{\beta}^{+} = \mu_{\beta}^{-}$$
$$\beta > \frac{\beta_{c}}{\beta} \Rightarrow \mu_{\beta}^{+} \neq \mu_{\beta}^{-}$$

Interaction and Magnetic Field:

$$H^h(\sigma_{\Lambda}) = -\sum_{\substack{i \sim j \ i,j \in \Lambda}} \sigma_i \sigma_j - h \sum_{i \in \Lambda} \sigma_i$$

Gibbs measure

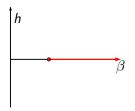
$$\mu_{\beta,\Lambda}^h(\sigma_{\Lambda}) = \frac{1}{Z_{\beta,\Lambda}^h} \exp\left(-\frac{\beta}{H^h}(\sigma_{\Lambda})\right)$$

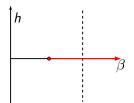
 $h \neq 0$

No influence of the boundary

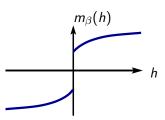
$$\beta > 0 \Rightarrow \mu_{\beta}^{h,+} = \mu_{\beta}^{h,-}$$

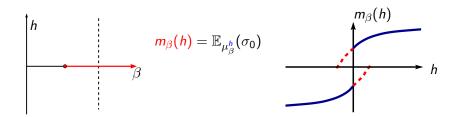
 $h \neq 0$: unique measure μ_{β}^{h} on \mathbb{Z}^{d}



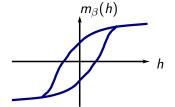


$$rac{m{m}_eta(m{h})}{m{arphi}_eta} = \mathbb{E}_{\mu_eta^m{h}}(\sigma_0)$$



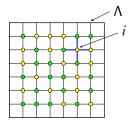


Experimentally: Hysteresis



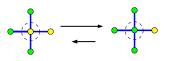
Glauber dynamics : Markov Chain

Glauber dynamics is reversible for the Gibbs measure $\mu_{\beta,\Lambda}^h$



- **①** Choose randomly i in Λ
- **2** Flip $\sigma_i \rightarrow -\sigma_i$ depending on \Rightarrow nearest neighbor spins
 - the magnetic field

Rate =
$$\exp\left(-\beta\sigma_i\left(\sum_{j\sim i}\sigma_j + h\right)\right)$$



$$h\simeq 0$$
 and $\beta\gg 1$

The dynamics tends to align a spin with its neighbors and the magnetic field.

Metastability

Fix
$$\beta > \beta_c$$
 and $h > 0$ then

$$m_{\beta}(h) = \mathbb{E}_{\mu_{\beta}^h}(\sigma_0) > m_{\beta} > 0$$

 μ^{h}_{eta} is the unique invariant measure for the Glauber dynamics on \mathbb{Z}^d

Question

Relaxation time of the dynamics starting from $\Theta = \{\sigma_i = -1\}_{i \in \mathbb{Z}^d}$

Metastability

Fix
$$\beta > \beta_c$$
 and $h > 0$ then

$$m_{\beta}(h) = \mathbb{E}_{\mu_{\beta}^{h}}(\sigma_{0}) > m_{\beta} > 0$$

 μ_{β}^{h} is the unique invariant measure for the Glauber dynamics on \mathbb{Z}^{d}

Question

Relaxation time of the dynamics starting from $\Theta = \{\sigma_i = -1\}_{i \in \mathbb{Z}^d}$

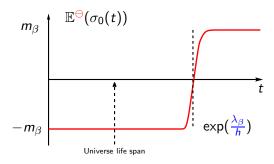
Theorem [Schonmann, Shlosman]

When d=2, there exists $\lambda_{\beta}>0$ such that

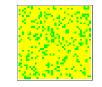
$$t \ll \exp(rac{\lambda_{eta}}{h}), \qquad \qquad \mathbb{E}^{\ominus}(\sigma_0(t)) = -m_{eta} + o(h)
onumber \ t \gg \exp(rac{\lambda_{eta}}{h}), \qquad \qquad \mathbb{E}^{\ominus}(\sigma_0(t)) = m_{eta} + o(h)
onumber \$$

Metastability

Choose $\beta > \beta_c$ and $h \approx 0$

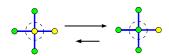


The minus phase is metastable for small *h*



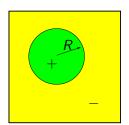
Nucleation

$$h \approx 0$$



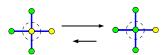
Forming a droplet of + of radius R

- Surface cost $\approx \tau_{\beta} R$
- $\bullet \ \, \text{Bulk gain} \approx \textit{hm}_{\beta} R^2$



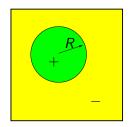
Nucleation

$$h \approx 0$$



Forming a droplet of + of radius R

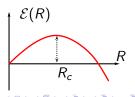
- Surface cost $\approx \tau_{\beta} R$
- Bulk gain $\approx hm_{\beta}R^2$



Minimize the droplet energy

$$\mathcal{E}(R) = \tau_{\beta}R - \frac{h}{m_{\beta}}R^{2}$$

Energy barrier at
$$R_c = \frac{\tau_\beta}{2m_\beta} \frac{1}{h}$$



Nucleation and Droplet growth

Nucleation time
$$pprox \exp\left(\mathcal{E}(R_c)\right) = \exp\left(\frac{ au_{eta}^2}{4m_{eta}}\frac{1}{h}\right)$$

[Olivieri, Vares] [Cerf, Ben Arous], [Bovier, Eckhoff, Gayrard, Klein] [Gaudillière, Den Hollander, Nardi, Olivieri, Scoppola] [Beltran, Landim]

Nucleation and Droplet growth

[Beltran, Landim]

Nucleation time
$$\approx \exp\left(\mathcal{E}(R_c)\right) = \exp\left(\frac{\tau_\beta^2}{4m_\beta}\frac{1}{h}\right)$$

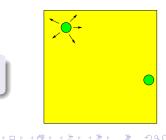
[Olivieri, Vares]
[Cerf, Ben Arous], [Bovier, Eckhoff, Gayrard, Klein]
[Gaudillière, Den Hollander, Nardi, Olivieri, Scoppola]

Nucleation anywhere in space and then droplet growth

Corrections on the relaxation time

Relaxation time
$$\simeq \exp\left(\frac{1}{d+1} \frac{\tau_{\beta}^2}{4m_{\beta}} \frac{1}{h}\right)$$

[Dehghanpour, Schonmann] [Schonmann, Shlosman]



Random interactions – Modeling Alloys

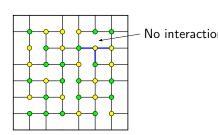
Edges in \mathbb{Z}^d are removed independently with probability 1-p

$$i \sim j$$
, $\mathbb{Q}(J_{(i,j)} = 1) = 1 - \mathbb{Q}(J_{(i,j)} = 0) = p$

Configurations: $\{\sigma_i\}_{i\in\Lambda}\in\{-1,1\}^{\Lambda}$

Nearest neighbor interactions

$$H^{J}(\sigma_{\Lambda}) = -\sum_{\substack{i \sim j \ i, j \in \Lambda}} J_{(i,j)} \sigma_{i} \sigma_{j}$$



Quenched Gibbs measure

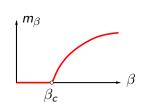
$$\mu_{\beta,\Lambda}^{\mathbf{J}}(\sigma_{\Lambda}) = \frac{1}{Z_{\beta,\Lambda}^{\mathbf{J}}} \exp\left(-\beta H^{\mathbf{J}}(\sigma_{\Lambda})\right)$$

Phase transition

$$oldsymbol{m}_eta = \mathbb{Q}\left(\mathbb{E}_{\mu^{ extsf{J}}_eta}(\sigma_0)
ight)$$

$$\lim_{N} \mu_{\beta,N}^{\mathbf{J},+} = \mu_{\beta}^{\mathbf{J},+}$$

Fix
$$p > p_c > 0$$





There is a critical value $\beta_c = \beta_c(p)$ such that $\beta > \beta_c \Leftrightarrow m_\beta > 0$

Influence of the boundary

$$eta < eta_{\mathbf{c}} \ \Rightarrow \ \mu_{eta}^{\mathbf{J},+} = \mu_{eta}^{\mathbf{J},-}, \quad \mathbf{J} \ a.s.$$
 $eta > eta_{\mathbf{c}} \ \Rightarrow \ \mu_{eta}^{\mathbf{J},+}
eq \mu_{eta}^{\mathbf{J},-}, \quad \mathbf{J} \ a.s.$

Hamiltonian:
$$H^{J,h}(\sigma_{\Lambda}) = -\sum_{\substack{i \sim j \\ i,j \in \Lambda}} \frac{J_{(i,j)}\sigma_i\sigma_j}{J_{(i,j)}\sigma_i\sigma_j} - h\sum_{i \in \Lambda} \sigma_i$$

Gibbs measure
$$\mu_{\beta,\Lambda}^{J,h}(\sigma_{\Lambda}) = \frac{1}{Z_{\beta,\Lambda}^{J,h}} \exp\left(-\beta H^{J,h}(\sigma_{\Lambda})\right)$$

 $h \neq 0$: unique measure $\mu_{\beta}^{J,h}$ on \mathbb{Z}^d



Question

Impact of the disorder on the dynamics ?

Relaxation time of the dynamics starting from $\Theta = \{\sigma_i = -1\}_{i \in \mathbb{Z}^d}$

Previous results

[Guionnet, Zegarlinski], [Cesi, Maes, Martinelli]

Slowdown of the dynamics in the uniqueness regime

$$\mathbb{Q}\left(\mathbb{E}_{\mu_{\beta}^{J,+}}(\sigma_0)\right) = 0 \qquad \text{(with } h = 0\text{)}$$

- No disorder: exponential relaxation to equilibrium
- Disorder (edge dilution) then for some range of (β, p) relaxation like $\exp(-(\log t)^{\frac{d}{d-1}})$

[Fontes, Mathieu, Picco], [Bianchi, Bovier, Ioffe]

Metastability for the Curie Weiss random field Ising model

[Wouts]: Spectral gap & relaxation in a pure phase

Faster relaxation to equilibrium

 $\mu_{eta}^{{\color{black} {J,h}}}$ unique invariant measure for the Glauber dynamics on \mathbb{Z}^d

Theorem [B, Graham, Wouts]

Fix $d \ge 2$ and $\beta > \beta_c(p)$. Then there exists $\lambda_{\beta}(p) > 0$ such that

$$t\gg \expig(rac{\lambda_{eta}(p)}{h^{d-1}}ig),$$

$$\mathbb{Q}\left(\mathbb{E}^{J,\ominus}(\sigma_0(t))=\mathbb{E}_{\mu_{eta}^{J,h}}(\sigma_0)+o(h)
ight)=1-o(h)$$

Disorder facilitates the relaxation

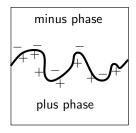
$$orall p < 1, \qquad \lim_{eta o \infty} rac{\lambda_{eta}(p)}{\lambda_{eta}(ext{quenched})} = 0$$

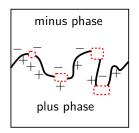
Reminiscent of catalysts in chemical reactions.



Catalyst effect

The disorder lowers the phase coexistence cost



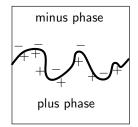


Remark. In d = 2:

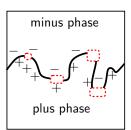
Interface with random interactions \simeq Polymer in random environment [Huse, Henley]

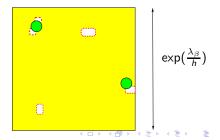
Catalyst effect

The disorder lowers the phase coexistence cost



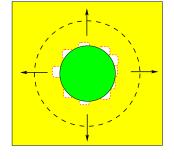
Atypical regions with high dilution act as catalysts and facilitate the nucleation

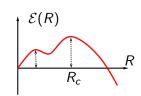




Slowdown by the disorder

Slowdown of the droplet growth by rare traps with high disorder





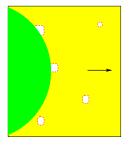
Energy landscape with disorder

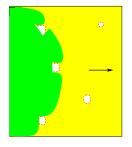
Similar mechanism for a Random Walk in Random Environnement

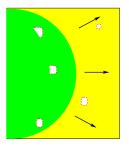
Ising Model Glauber dynamics Random interactions Interface motion

Later stage of droplet growth

For very large droplets the analogy with Random Walk in Random Environnement is no longer valid.





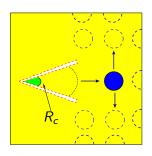


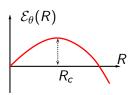
One can derive a (crude) lower bound on the growth velocity

Open question

Understanding interface velocity ⇔ Impact of disorder at all scales

Cone catalysts





Energy landscape in a cone of angle θ Energy barrier is of order θ^d

Two step growth

- Nucleation in a cone catalyst with angle θ (atypical event)
- Invasion by large droplets (super-critical percolation).

Mathematical tools

Key issue: Phase coexistence with disorder & Renormalization

[Schonmann, Shlosman] used a two-dimensional approach devised by [Dobrushin, Kotecky, Shlosman, Pfister, Ioffe, Velenik]

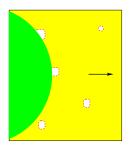
We rely on the \mathbb{L}^1 -approach introduced by [Presutti, Cassandro, Alberti, Belletini, Cerf, Pisztora, B., Ioffe, Velenik]

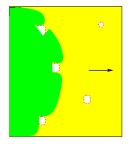
The \mathbb{L}^1 -approach was extended to disordered systems by [Wouts]. This method allows us to control deviations of the surface tension.

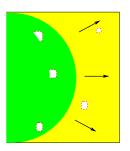
Byproduct

Generalization in $d \ge 3$ of the upper bound on the relaxation time derived in [Schonmann, Shlosman]

Later stage of droplet growth







Question

Understanding interface velocity ⇔ Impact of disorder at all scales

Effective interface model

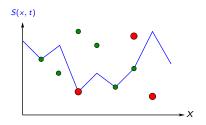
Interface heights:

$$x \in \mathbb{Z}, t \in \mathbb{Z}^+, \quad S(x, t) \in \mathbb{Z}^+$$

Disorder:

$$x \in \mathbb{Z}, y \in \mathbb{Z}^+, \quad \eta(x, y) \in \mathbb{R}$$

i.i.d variables and $\mathbb{E}(\eta) = f \geq 0$



Random force with positive mean

"
$$\partial_t S(x,t) = \Delta S(x,t) + \eta(x,S(x,t))$$
"

Effective interface model

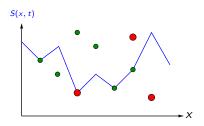
Interface heights:

$$x \in \mathbb{Z}, t \in \mathbb{Z}^+, \quad S(x, t) \in \mathbb{Z}^+$$

Disorder:

$$x \in \mathbb{Z}, y \in \mathbb{Z}^+, \quad \eta(x, y) \in \mathbb{R}$$

i.i.d variables and $\mathbb{E}(\eta) = f \geq 0$



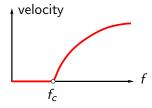
Zero temperature dynamics

• Initial data : S(x,0) = 0

•
$$S(x, t + 1) = S(x, t) + 1$$
 if

$$S(x+1,t) + S(x-1,t) - 2S(x,t) + \eta(x,S(x,t)) > 0$$

Zero temperature: phase transition



 $f < f_c$: the interface is blocked

 $f > f_c$: positive velocity

Physics:

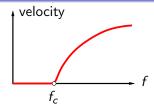
[Koplik, Levine], [Narayan, Fisher], [Leschhorn], [Vannimenus, Derrida], [Schütze, Nattermann], [Le Doussal, Wiese, Chauve] [Giamarchi, Kolton, Krauth, Rosso]

Open question

Critical exponents

Ising Model Glauber dynamics Random interactions Interface motion

Zero temperature : phase transition



 $f < f_c$: the interface is blocked

 $f > f_c$: positive velocity

Mathematics:

 $f \simeq 0$:

[Dirr, Dondl, Grimmett, Holroyd, Scheutzow], [Dirr, Dondl, Scheutzow]

 $f\gg 1$:

[Coville, Dirr, Luckhaus], [Dondl, Scheutzow]

Open question

Could the interface move with zero velocity?

Let h > 1. Define the set of blocked interfaces

$$\mathcal{A}^{h,L} = \left\{ \eta; \right\}$$

Let h > 1. Define the set of blocked interfaces

$$\mathcal{A}^{h,L} = \left\{ \eta; \qquad hL \right]$$

Criterion

Suppose there is h > 1, $\rho > 0$ such for L large enough

$$\mathbb{P}(A^{h,L}) \leq \frac{1}{L^{\rho}}$$

Theorem. [B, Teixeira]

Suppose that the criterion holds then there is c > 0 such that

$$\liminf_{t\to\infty}\frac{1}{t}S(0,t)\geq c$$

Perturbative Regime:

Suppose that $\{\eta(x,y)\}$ are i.i.d Gaussian variables with

- Mean : $\mathbb{E}(\eta) = f$
- Variance : $\mathbb{E}(\eta^2) \mathbb{E}(\eta)^2 = \sigma$

If *f* is large enough then the criterion holds.

Theorem. [B, Teixeira]

Suppose that the criterion holds then there is c > 0 such that

$$\liminf_{t\to\infty}\frac{1}{t}S(0,t)\geq c$$

Analogy with percolation:

- $p < p_c$: Exponential decay of $\mathbb{P}(O \leftrightarrow x)$ when $x \to \infty$ [Aizenman, Barsky], [Menshikov]
- $p>p_c$: Slab percolation [Aizenman, Chayes, Chayes, Russo], [Grimmett, Marstrand]

Conclusion

- Glauber dynamics and metastability
- Random interactions and catalyst effect
- Phase transition for interfaces in random media
- Criterion for positive speed

Open problems

- Metastability: Lower bound on the relaxation time
- Validity of the criterion up to f_c