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Model and motivations

A simulation of the East model at equilibrium with
density 1/2 ; the ones are in black.

For p ∈ (0, 1), the East model with density p is defined on Z by the generator

Lf (ω) =
∑
x∈Z

(1− ωx+1)(p(1− ωx) + (1− p)ωx) [f (ωx)− f (ω)]

It has equilibrium (and in fact reversible) measure µ the product Bernoulli
measure of density p on {0, 1}Z.

It can also be constructed by attaching a Poisson process clock to
every site in Z. Every time a clock rings, the site is refreshed to a
Bernoulli variable of parameter p, but only if its right neighbour is
empty.

This constraint creates the ”bubbles” one can see on the picture. A
natural question is : how do these bubbles appear and disappear?

We begin the investigation of this matter by considering the East
model with initial configuration empty on the negative sites. We
then ask the following questions :

•How does the position of the left-most zero (the front) behave?

•What does the configuration seen from the front look like?

Note : Since the dynamics is not monotonic, specific argu-
ments have to be devised to address these questions. For in-
stance, the sub-additivity argument used in [Lig85] relies heav-
ily on attractiveness and cannot transfer to our case.

Main results

•Law of large numbers for the position of the front

Theorem 1There exists v < 0 such that if Xt is the position of
the front at time t

Xt

t
−→
t→∞

v

•Ergodicity of the system seen from the front

Theorem 2The process of the configurations seen from the front
admits a unique invariant measure.
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Key ingredients
Distinguished zero

The distinguished zero is a tool introduced in [AD02] that exploits the orientation of the model.

Choose a zero in the initial configuration and make it distinguished. It remains the distinguished zero
up to the first time its clock rings while its right neighbour is also a zero. It then jumps one site to the
right. We then iterate the process. Notice that by construction there is always a zero at the position of
the distinguished zero.

Moreover, the distinguished zero leaves equilibrium behind it : every time it jumps to the right, the site
it occupied previously is instantaneously put to equilibrium (a Bernoulli variable independant of all the
rest). Then, until the distinguished zero moves again, we have an East dynamics with zero boundary
condition, for which the equilibrium product measure is stationary.

An example of the trajectory of a distin-
guished zero (in red)

One interest of this object is that it acts as a moving zero boundary condition, thus enabling relaxation
on its left :

Proposition 1Let ω ∈ {0, 1}Z such that ωz = 0 for some z > 0, and f a
bounded function with support in N. Let (ξ(t))t≥0 be the trajectory of the
distinguished zero starting at z. Then∣∣Eω [f (ω(t))]− Eω

[
µ{0}(f )(ω(t))

]∣∣ ≤ √2‖f‖∞
(

1

p ∧ q

)z
e−tgap

This result is more precise than the one stated in [CMST10], in that it applies to function with infinite
support.

We use this repeatedly, distinguishing the front at different times, to prove that there are “a lot of zeros”
behind the front.
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For an appropriate choice of parameters,
with high probability there is a zero in each
of the shaded boxes : they have relaxed to
equilibrium thanks to the zero that was at
the front at times s− α, s− 2α, etc.

Decorrelation behind the front

We focus here on what a configuration as seen from the front looks like. Its distribution is not the
equilibrium one (product of Bernoulli measure). However, we show that under appropriate assumptions,
the total variation distance between the configuration at distance L behind the front and the equilibrium
distribution is exponentially small in L.

Theorem 3 Let L,M be two natural integers. For ω with a left-most zero in 0 (resp.
π a distribution on the space of such configurations), t > 0, we denote by νωt,L,M (resp.

νπt,L,M) the distribution of ω(t)|[Xt+L+1,Xt+L+M ] when ω(0) = ω (resp. ω(0) ∼ π). Then

there exist constants ε > 0, K <∞ depending only on p such that :

1. If t is large enough (depending on L + M), then

‖νωt,L,M − µ|[1,M ]‖TV ≤ Ke−εL (1)

2. ∥∥∥µ− νµt,L,∞∥∥∥TV ≤ Ke−εL (2)

To prove this, we use the fact that we established before, that there are several zeros behind the front.
With high probability there is one at an appropriate position (in an appropriate box) that we can
distinguish and which will bring equilibrium at Xt + L + 1, using proposition 1. Then we iterate at
Xt+L+ 2, Xt+L+ 3, .... For an appropriate choice of parameters, the error terms are in e−ε(L+k) and
sum up to a term in e−εL.
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This result is almost enough to prove the first part of theorem 1, using a sub-additivity argument. But
we can also deduce it from the second part of theorem 1.

Coupling

To show part 2 of theorem 1, we need to show that we can couple the processes seen from the front
starting from any two different configurations. The previous theorem tells us that we can do it far from
the front, where the system tends to forget that there is a front at all. The problem is now to get closer
to the front.

Theorem 4 Let t > 0, ω, σ initial configurations. There exists L = L(t) ∈ N∗, and
a coupling (ωt, σt) between ω(t) and σ(t) seen from their respective fronts, such that
L(t) −→

t→∞
+∞ and the convergence

P
(

(ωt)[1,L] = (σt)[1,L]

)
−→
t→∞

1 (3)

occurs uniformly in ω, σ.

This gives the unicity of the invariant measure for the process seen from the front.

Inspired by [KS01], our strategy consists in trying until it works.

Basically, we wait long enough for the configurations “far from the front” to couple, using theorem 3.
Once this is done, there is a small, but positive probability that the parts of the configurations “near the
front” will agree after some time (if an appropriate sequence of clock rings and coin flips occurs). It is
enough for us that one out of many attempts be successful. What we need to be careful about is that
the failure of a given attempt might compromise the following ones.

However, keeping track of “enough zeros behind the front” throughout the attempts ensures that the
coupling far from the front remains successful enough for our purpose. In addition, we can choose the
events on which the configurations near the front agree after a successful coupling far from the front to be
independent. These two facts guarantee that the probability of success remains high enough throughout
the attempts, hence that with high probability one of them will be successful.


